RNAseq of frog oocyte

Loading report..

Highlight Samples

Regex mode off

    Rename Samples

    Click here for bulk input.

    Paste two columns of a tab-delimited table here (eg. from Excel).

    First column should be the old name, second column the new name.

    Regex mode off

      Show / Hide Samples

      Regex mode off

        Export Plots

        px
        px
        X

        Download the raw data used to create the plots in this report below:

        Note that additional data was saved in multiqc_data when this report was generated.


        Choose Plots

        If you use plots from MultiQC in a publication or presentation, please cite:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        Save Settings

        You can save the toolbox settings for this report to the browser.


        Load Settings

        Choose a saved report profile from the dropdown box below:

        About MultiQC

        This report was generated using MultiQC, version 1.4.dev0 (2ebab02)

        You can see a YouTube video describing how to use MultiQC reports here: https://youtu.be/qPbIlO_KWN0

        For more information about MultiQC, including other videos and extensive documentation, please visit http://multiqc.info

        You can report bugs, suggest improvements and find the source code for MultiQC on GitHub: https://github.com/ewels/MultiQC

        MultiQC is published in Bioinformatics:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        RNAseq of frog oocyte

        PI
        Elvan Boke
        User
        Marion Salzer
        Date
        Mon Apr 20 17:41:09 UTC 2020
        Contact E-mail
        luca.cozzuto@crg.eu
        Application Type
        RNA-seq
        Reference Genome
        XL9

        Report generated on 2020-04-20, 17:41 based on data in: /nfs/users/eboke/sequencing_analysis/Marion_Salzer/2020-04-20-xenopus_laevis/analysis/work/f8/ac6f723059d45e11f38a7cf90540cd


        General Statistics

        Showing 32/32 rows and 4/10 columns.
        Sample Name% Dups% GCM Seqs% Trimmed% AlignedM Aligned
        LBS7_3_01783AAB_GATCAG
        64.6%
        45%
        11.8
        1.9%
        76.2%
        9.0
        LBS7_3_01783AAB_GATCAG-trimmed
        64.6%
        45%
        11.8
        LBS7_4_01787AAB_ATTCCT
        62.3%
        40%
        21.4
        2.4%
        88.7%
        19.0
        LBS7_4_01787AAB_ATTCCT-trimmed
        62.3%
        40%
        21.4
        LBT1_3_01782AAB_TTAGGC
        68.7%
        43%
        16.6
        1.9%
        62.5%
        10.4
        LBT1_3_01782AAB_TTAGGC-trimmed
        68.7%
        43%
        16.6
        LBT1_4_01786AAB_GACGAC
        52.4%
        41%
        14.3
        2.3%
        79.5%
        11.4
        LBT1_4_01786AAB_GACGAC-trimmed
        52.4%
        41%
        14.3
        LB_3_01781AAB_TATAAT
        54.8%
        44%
        15.9
        2.5%
        89.9%
        14.3
        LB_3_01781AAB_TATAAT-trimmed
        54.8%
        44%
        15.9
        LB_4_01785AAB_CAGGCG
        52.9%
        44%
        15.9
        2.5%
        90.5%
        14.4
        LB_4_01785AAB_CAGGCG-trimmed
        53.0%
        44%
        15.9
        MLS7_1_01775AAB_GTGAAA
        47.8%
        44%
        23.7
        2.4%
        86.9%
        20.6
        MLS7_1_01775AAB_GTGAAA-trimmed
        47.8%
        44%
        23.7
        MLS7_2_01779AAB_CTAGCT
        50.1%
        45%
        18.5
        2.3%
        85.6%
        15.8
        MLS7_2_01779AAB_CTAGCT-trimmed
        50.2%
        45%
        18.4
        MLT1_1_01774AAB_CTTGTA
        62.5%
        43%
        18.8
        2.2%
        75.3%
        14.1
        MLT1_1_01774AAB_CTTGTA-trimmed
        62.5%
        43%
        18.8
        MLT1_2_01778AAB_CAAAAG
        52.3%
        43%
        21.8
        2.3%
        80.8%
        17.6
        MLT1_2_01778AAB_CAAAAG-trimmed
        52.4%
        43%
        21.8
        ML_1_01773AAB_GCCAAT
        53.0%
        47%
        20.0
        2.4%
        91.5%
        18.3
        ML_1_01773AAB_GCCAAT-trimmed
        53.0%
        47%
        20.0
        ML_2_01777AAB_GAGTGG
        56.8%
        47%
        18.7
        2.4%
        90.9%
        17.0
        ML_2_01777AAB_GAGTGG-trimmed
        56.8%
        47%
        18.7
        PBS_1_01772AAB_ACAGTG
        51.6%
        45%
        20.6
        2.4%
        91.8%
        18.9
        PBS_1_01772AAB_ACAGTG-trimmed
        51.6%
        45%
        20.6
        PBS_2_01776AAB_AGTTCC
        54.0%
        47%
        15.1
        2.4%
        90.9%
        13.7
        PBS_2_01776AAB_AGTTCC-trimmed
        54.0%
        47%
        15.1
        PBS_3_01780AAB_TCATTC
        57.2%
        46%
        21.0
        2.4%
        91.4%
        19.2
        PBS_3_01780AAB_TCATTC-trimmed
        57.2%
        46%
        21.0
        PBS_4_01784AAB_ATGAGC
        48.0%
        45%
        13.3
        2.4%
        91.6%
        12.2
        PBS_4_01784AAB_ATGAGC-trimmed
        48.0%
        45%
        13.3

        Ribosomal contamination

        Ribosomal contamination

        Showing 16/16 rows and 2/2 columns.
        FilerRNA/Reads%
        LBS7_3_01783AAB_GATCAG.fastq.gz
        569684/5000000
        11.39368%
        MLS7_2_01779AAB_CTAGCT.fastq.gz
        93114/5000000
        1.86228%
        MLS7_1_01775AAB_GTGAAA.fastq.gz
        33803/5000000
        0.67606%
        ML_2_01777AAB_GAGTGG.fastq.gz
        2453/5000000
        0.04906%
        PBS_1_01772AAB_ACAGTG.fastq.gz
        5920/5000000
        0.1184%
        LB_4_01785AAB_CAGGCG.fastq.gz
        4698/5000000
        0.09396%
        LBT1_4_01786AAB_GACGAC.fastq.gz
        379479/5000000
        7.58958%
        LB_3_01781AAB_TATAAT.fastq.gz
        12336/5000000
        0.24672%
        ML_1_01773AAB_GCCAAT.fastq.gz
        4889/5000000
        0.09778%
        PBS_4_01784AAB_ATGAGC.fastq.gz
        1964/5000000
        0.03928%
        MLT1_1_01774AAB_CTTGTA.fastq.gz
        1030215/5000000
        20.6043%
        MLT1_2_01778AAB_CAAAAG.fastq.gz
        218678/5000000
        4.37356%
        PBS_3_01780AAB_TCATTC.fastq.gz
        2713/5000000
        0.05426%
        PBS_2_01776AAB_AGTTCC.fastq.gz
        2598/5000000
        0.05196%
        LBT1_3_01782AAB_TTAGGC.fastq.gz
        1185686/5000000
        23.71372%
        LBS7_4_01787AAB_ATTCCT.fastq.gz
        144496/5000000
        2.88992%

        Tool description

        Tool description This section describes the tools used during the analysis and their reference

        Tool version
        Reference
        FastQC v0.11.5
        Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
        STAR_2.5.3a
        Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25. PubMed PMID: 23104886; PubMed Central PMCID: PMC3530905
        skewer version: 0.2.2
        Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014 Jun 12;15:182. doi: 10.1186/1471-2105-15-182. PubMed PMID: 24925680; PubMed Central PMCID: PMC4074385
        QualiMap v.2.2.1
        García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 2012 Oct 15;28(20):2678-9. doi: 10.1093/bioinformatics/bts503. Epub 2012 Aug 22. PubMed PMID: 22914218
        riboPicker version 0.4.3
        Schmieder R, Lim YW, Edwards R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics. 2012 Feb 1;28(3):433-5. doi: 10.1093/bioinformatics/btr669. Epub 2011 Dec 6. PubMed PMID: 22155869; PubMed Central PMCID: PMC3268242
        bedtools v2.26.0
        Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010 Mar 15;26(6):841-2. doi: 10.1093/bioinformatics/btq033. Epub 2010 Jan 28. PubMed PMID: 20110278; PubMed Central PMCID: PMC2832824
        samtools 1.4.1
        Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8. PubMed PMID: 19505943; PubMed Central PMCID: PMC2723002

        FastQC (raw)

        FastQC (raw) is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

        Sequence Quality Histograms

        The mean quality value across each base position in the read. See the FastQC help.

        loading..

        Per Sequence Quality Scores

        The number of reads with average quality scores. Shows if a subset of reads has poor quality. See the FastQC help.

        loading..

        Per Base Sequence Content

        The proportion of each base position for which each of the four normal DNA bases has been called. See the FastQC help.

        Click a sample row to see a line plot for that dataset.
        Rollover for sample name
        Position: -
        %T: -
        %C: -
        %A: -
        %G: -

        Per Sequence GC Content

        The average GC content of reads. Normal random library typically have a roughly normal distribution of GC content. See the FastQC help.

        loading..

        Per Base N Content

        The percentage of base calls at each position for which an N was called. See the FastQC help.

        loading..

        Sequence Length Distribution

        All samples have sequences of a single length (50bp).

        Sequence Duplication Levels

        The relative level of duplication found for every sequence. See the FastQC help.

        loading..

        Overrepresented sequences

        The total amount of overrepresented sequences found in each library. See the FastQC help for further information.

        loading..

        Adapter Content

        The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position. See the FastQC help. Only samples with ≥ 0.1% adapter contamination are shown.

        No samples found with any adapter contamination > 0.1%

        FastQC (trimmed)

        This section of the report shows FastQC results after adapter trimming.

        Sequence Quality Histograms

        The mean quality value across each base position in the read. See the FastQC help.

        loading..

        Per Sequence Quality Scores

        The number of reads with average quality scores. Shows if a subset of reads has poor quality. See the FastQC help.

        loading..

        Per Base Sequence Content

        The proportion of each base position for which each of the four normal DNA bases has been called. See the FastQC help.

        Click a sample row to see a line plot for that dataset.
        Rollover for sample name
        Position: -
        %T: -
        %C: -
        %A: -
        %G: -

        Per Sequence GC Content

        The average GC content of reads. Normal random library typically have a roughly normal distribution of GC content. See the FastQC help.

        loading..

        Per Base N Content

        The percentage of base calls at each position for which an N was called. See the FastQC help.

        loading..

        Sequence Length Distribution

        The distribution of fragment sizes (read lengths) found. See the FastQC help.

        loading..

        Sequence Duplication Levels

        The relative level of duplication found for every sequence. See the FastQC help.

        loading..

        Overrepresented sequences

        The total amount of overrepresented sequences found in each library. See the FastQC help for further information.

        loading..

        Adapter Content

        The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position. See the FastQC help. Only samples with ≥ 0.1% adapter contamination are shown.

        No samples found with any adapter contamination > 0.1%

        Skewer

        Skewer is an adapter trimming tool specially designed for processing next-generation sequencing (NGS) paired-end sequences.

        loading..

        QualiMap

        QualiMap is a platform-independent application to facilitate the quality control of alignment sequencing data and its derivatives like feature counts.

        Genomic origin of reads

        Classification of mapped reads as originating in exonic, intronic or intergenic regions. These can be displayed as either the number or percentage of mapped reads.

        There are currently three main approaches to map reads to transcripts in an RNA-seq experiment: mapping reads to a reference genome to identify expressed transcripts that are annotated (and discover those that are unknown), mapping reads to a reference transcriptome, and de novo assembly of transcript sequences (Conesa et al. 2016).

        For RNA-seq QC analysis, QualiMap can be used to assess alignments produced by the first of these approaches. For input, it requires a GTF annotation file along with a reference genome, which can be used to reconstruct the exon structure of known transcripts. This allows mapped reads to be grouped by whether they originate in an exonic region (for QualiMap, this may include 5′ and 3′ UTR regions as well as protein-coding exons), an intron, or an intergenic region (see the Qualimap 2 documentation).

        The inferred genomic origins of RNA-seq reads are presented here as a bar graph showing either the number or percentage of mapped reads in each read dataset that have been assigned to each type of genomic region. This graph can be used to assess the proportion of useful reads in an RNA-seq experiment. That proportion can be reduced by the presence of intron sequences, especially if depletion of ribosomal RNA was used during sample preparation (Sims et al. 2014). It can also be reduced by off-target transcripts, which are detected in greater numbers at the sequencing depths needed to detect poorly-expressed transcripts (Tarazona et al. 2011).

        loading..

        Gene Coverage Profile

        Mean distribution of coverage depth across the length of all mapped transcripts.

        There are currently three main approaches to map reads to transcripts in an RNA-seq experiment: mapping reads to a reference genome to identify expressed transcripts that are annotated (and discover those that are unknown), mapping reads to a reference transcriptome, and de novo assembly of transcript sequences (Conesa et al. 2016).

        For RNA-seq QC analysis, QualiMap can be used to assess alignments produced by the first of these approaches. For input, it requires a GTF annotation file along with a reference genome, which can be used to reconstruct the exon structure of known transcripts. QualiMap uses this information to calculate the depth of coverage along the length of each annotated transcript. For a set of reads mapped to a transcript, the depth of coverage at a given base position is the number of high-quality reads that map to the transcript at that position (Sims et al. 2014).

        QualiMap calculates coverage depth at every base position of each annotated transcript. To enable meaningful comparison between transcripts, base positions are rescaled to relative positions expressed as percentage distance along each transcript (0%, 1%, …, 99%). For the set of transcripts with at least one mapped read, QualiMap plots the cumulative mapped-read depth (y-axis) at each relative transcript position (x-axis). This plot shows the gene coverage profile across all mapped transcripts for each read dataset. It provides a visual way to assess positional biases, such as an accumulation of mapped reads at the 3′ end of transcripts, which may indicate poor RNA quality in the original sample (Conesa et al. 2016).

        loading..

        STAR

        STAR is an ultrafast universal RNA-seq aligner.

        Alignment Scores

        loading..

        Gene Counts

        Statistics from results generated using --quantMode GeneCounts. The three tabs show counts for unstranded RNA-seq, counts for the 1st read strand aligned with RNA and counts for the 2nd read strand aligned with RNA.

           
        loading..