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Abstract 
Gene regulatory circuits must be particularly configured for each cell type. The appropriate 

deployment of specific gene expression programs is key throughout development to terminate 
and maintain successfully each class of cells.  For instance, cardiac differentiation represents 

a suitable model for understanding gene regulation and epigenetic control in development. 
Over the past decades, significant advancements in next-generation sequencing technologies 

have dramatically accelerated data production. Recently, the increasing application of deep 
learning (DL) models further is demonstrating the ability to extract meaningful insights from 

this kind of information that are not reported by classical data mining techniques. Here, we 
evaluated DL models, including variational autoencoders (VAEs) and autoencoders (AEs), 

alongside other dimensionality reduction techniques for their ability to compress and 

reconstruct experimental features collected along cardiac differentiation, by considering genes 
as data points. For this, we have constructed a comprehensive multi-omics dataset from public 

repositories, combining gene expression and multiple posttranslational histone modifications 
in four stages of mouse cardiac differentiation. By adopting the VAE model as feature 

extractor, genes were mapped into a lower dimensional space. Remarkably, clustering of the 
VAE latent code has revealed distinct groups with characteristic expression and epigenetic 

patterns throughout differentiation. To sum up, this study presents a  VAE-based clustering 
pipeline to capture gene expression and epigenetic data dynamics in cardiac development, 

serving as a proof of concept for a flexible framework that could be generalized to other 
biological scenarios. 
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1 Introduction 

1.1 Chromatin and histone modifications  

In eukaryotic cells, DNA is tightly packed within the nucleus by associating with histone 

proteins to form a structured complex called chromatin (Millán-Zambrano et al., 2022). This 

organization allows DNA to be highly condensed while remaining accessible for critical 
processes such as transcription, replication, repair, and recombination. The fundamental unit 

of chromatin is the nucleosome, where DNA is wrapped around an octamer of histones (two 
each of H2A, H2B, H3, and H4) (Luger et al., 1997). Chromatin compaction is further stabilized 

by linker H1 histones, which bind at the DNA entry and exit points of each nucleosome 
(Fyodorov et al., 2018).  

DNA methylation, core histone posttranslational modifications (PTMs), and binding of non-
histone architectural proteins have been shown to affect the intrinsic properties of 

nucleosomes, and thus have important functions in regulating nucleosome dynamics (Li and 

Reinberg, 2011). Histone PTMs serve as signals that influence chromatin compaction and, 
consequently, gene expression. For instance, histone modifications like tri-methylation at 

lysine 4 of histone H3 (H3K4me3) and acetylation at lysine 27 of histone H3 (H3K27ac) are 
associated to transcriptionally active states. H3K4me3 is associated with active promoters, 

while H3K27ac is enriched at both active promoters and enhancers. Histone PTMs are 
dynamically regulated by enzymes categorized as "writers" (which deposit the modifications), 

"readers" (which interpret these modifications), and "erasers" (which remove them). 
Numerous factors are involved in the deposition of PTMs on histones, most of them acting 

within a protein complex, such as the Trithorax complexes responsible for gene activation, 
and the Polycomb complexes, implicated in gene repression (Schuettengruber et al., 2017). 

In mouse embryogenesis, Polycomb group (PcG) proteins are key PTM modifiers, essential 

for regulating transcriptional programs during development (Aranda et al., 2015). PcG proteins 
silence lineage-specific genes in pluripotent cells and repress pluripotency genes in 

differentiated cells (Pasini et al., 2007). PcG proteins are organized into Polycomb Repressive 
Complexes 1 and 2 (PRC1 and PRC2), catalyzing H2A monoubiquitination (H2Aub) and H3 

lysine 27 methylation (H3K27me1/2/3), both correlated with transcriptionally silent chromatin 
(Aranda et al., 2015). Interestingly, some promoters and enhancers display both activating 

(H3K4me3) and repressive (H3K27me3) marks in a "bivalent" state (Bernstein et al., 2006). 
This unique chromatin configuration maintains genes in a poised state, ready to activate or 
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repress as developmental cues arise. This bivalency is especially important in stem cells and 

during development, where rapid shifts in gene expression are essential (Blanco et al., 2020). 
Chromatin is a highly dynamic structure shaped by the interplay between histone PTMs, 

chromatin remodelers, and transcription factors, rather than being a static scaffold. These 
factors regulate chromatin accessibility and transitions between open and closed states, 

enabling precise control of gene expression. Adding another layer of complexity, various 
species exhibit distinct histone variants that can undergo unique modifications (Martire and 

Banaszynski, 2020). The significance of these variants is highlighted by findings showing that 
key residues in histones, especially those near critical regulatory PTM, are frequently mutated 

in certain cancers. Additionally, the machinery responsible for writing, reading, and erasing 
PTMs is frequently altered in cancer, and in many cases these mutations are oncogenic 

drivers or contributors to tumor progression (Shen and Laird, 2013). 

1.2 Epigenetic control in heart development 

Understanding the regulatory networks controlling heart development have led to significant 

insights into its lineage origins and morphogenesis, illuminating important aspects of 
mammalian embryology. The morphogenesis of the mouse heart resembles that of the 

human, and thus has been critical for understanding human congenital heart disease 
(Bruneau, 2013). Cardiac differentiation is a key model for studying gene regulation and 

epigenetic control in development, as it transforms pluripotent cells into specialized cardiac 
cells through tightly coordinated gene expression programs. This process involves the 

simultaneous differentiation of cell types like cardiomyocytes, endothelial cells, and smooth 
muscle cells, essential to heart structure. Precise timing in gene activation and repression is 

critical; disruptions can lead to human congenital heart disease (CHD), highlighting the role of 
transcriptional and epigenetic regulation (Akerberg and Pu, 2020).  

Significant research has been invested to map the cardiomyocyte epigenome throughout stem 

cell to ultimate differentiation (Wamstad et al., 2012; Paige et al., 2012) and normal heart 
development (Nord et al., 2013; Gilsbach et al., 2018). These studies reveal a highly dynamic 

epigenome with stage-specific changes in histone modifications at promoters and enhancers, 
shaping transcriptional networks during cardiac differentiation. Transcription factors implicated 

in CHD, such as Tbx5 and Nkx2-5, interact with histone modifying enzymes to regulate gene 
expression (Miller et al., 2010). The Polycomb H3K27 methyltransferase Ezh2, regulates gene 

expression programs that are important for heart development and homeostasis, and deletion 
of Ezh2 in cardiac progenitors caused postnatal myocardial pathology (Delgado-Olguín et al., 

2012). Furthermore, Ezh2 directly methylates Gata4, a key regulator in heart development, 
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attenuating its transcriptional activation ability in both mouse and human (He et al., 2012). By 

understanding these regulatory networks, we will gain insight into cardiac lineage formation, 
heart morphogenesis, and the genetic mechanisms underlying CHD. 

1.3 Chromatin Immunoprecipitation coupled with high-
throughput sequencing (ChIP-seq) 

Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has 

become the primary method for mapping genome-wide protein-DNA interactions and histone 
PTMs. Unlike previous techniques, such as ChIP-chip, ChIP-seq directly sequences DNA 

fragments of interest, providing higher resolution, fewer artefacts, broader coverage, and a 
larger dynamic range (Park, 2009). In a typical ChIP-seq experiment, chromatin is first 

crosslinked to stabilize protein-DNA interactions and then sheared into fragments. Antibodies 
specific to the target, such as transcription factors, chromatin-associated proteins, or histone 

PTMs, are applied to selectively precipitate and enrich these fragments. The purified DNA is 
then sequenced on next-generation sequencing platforms, where adaptors are ligated, 

clonally clustered amplicons are generated, and enzyme-driven extensions occur in parallel. 

High-resolution imaging detects fluorescent labels after each extension, enabling precise, 
comprehensive profiling of DNA-protein interactions and epigenetic marks across the 

genome. The general computational pipeline involves quality control, read alignment to a 
reference genome, removal of duplicates, and identification of enriched regions using peak-

calling algorithms. The output typically includes genomic coordinates and signal intensity 
values of ChIP-seq enriched regions, which can be visualized and annotated for downstream 

analyses of chromatin states and gene regulation. The ENCODE Consortium has conducted 
extensive ChIP-seq experiments (Moore et al., 2020), leading to the development of standards 

and guidelines. However, due to the variety of cell types, conditions, and modifications 

involved, universal guidelines are challenging to establish. The success of ChIP experiments 
largely relies on the specificity of antibodies used for target proteins or histone PTMs. Further 

challenges include the need for many cells and prior knowledge of DNA-binding proteins or 
histone modifications (Furey, 2012). Control experiments in ChIP are essential to address 

artifacts raised by uneven DNA fragmentation and repetitive sequence enrichment (Park, 
2009). To validate ChIP-seq peaks, they should be compared with a matched control sample, 

common controls include input DNA (pre-IP sample) also known as Whole Cell Extract (WCE), 
mock IP DNA (IP without antibodies), and non-specific IP DNA (using an antibody against a 

protein unrelated to DNA binding or histone PTMs). Peak calling remains a computational 
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challenge, as manual inspection and data visualization are often required to confirm true 

binding sites, despite advancements in peak-calling tools. Recently, two peak-callers based 
on Convolutional Neural Networks showed improvements over classical statistical methods, 

though their benchmarking was limited in sample diversity, and they have not been widely 
adopted and tested in the literature. (Oh et al., 2020; Hentges et al., 2022). 

1.4 RNA sequencing (RNA-seq) 

RNA sequencing (RNA-seq) is a powerful tool developed over a decade ago that has 

transformed molecular biology by enabling detailed analysis of gene expression and 
transcriptomic profiles (Emrich et al., 2007; Lister et al., 2008). Primarily used for differential 

gene expression (DGE) analysis, canonical RNA-seq workflow involves extracting RNA, 
enriching or depleting specific RNA types (such as mRNA or rRNA), synthesizing cDNA, 

preparing sequencing libraries, and high-throughput sequencing. The computational steps 
include aligning reads to a reference transcriptome, quantifying and normalizing gene 

expression levels, and applying statistical models to identify significant changes in expression 

between conditions (Stark et al., 2019). 
Bulk RNA-seq has significantly advanced biological research, but it lacks the ability to analyze 

gene expression at single-cell resolution, thereby missing insights into individual cell types 
and spatial organization within tissues (Piwecka et al., 2023). Single-cell RNA-seq, developed 

in 2009 (Tang et al., 2009), addresses this limitation by enabling detailed profiling of individual 
cells, which reveals cellular diversity and rare cell populations in complex tissues. Spatial 

transcriptomics further enhances this by preserving information about each cell’s location 
within the tissue, helping to understand how the expression of the same gene is different 

depending on the specific domain of the sample that is scrutinized (Ståhl et al., 2016). 
While bulk RNA-seq remains a key tool for quick gene expression screens, single-cell and 

spatial RNA-seq methods are rapidly becoming essential for high-resolution analysis, together 

providing a more comprehensive understanding of cellular complexity and tissue architecture. 

1.5 Deep learning applications in gene expression regulation 

The vast accumulation of multi-omics data from NGS has fueled the expansion of deep 

learning (DL) into gene regulation research. DL algorithms excel due to their ability to capture 

complex and nonlinear features relationship from high volumes of information. Supervised 
learning approaches in DL, which rely on labeled data, have proven useful for tasks like 

predicting regulatory regions, gene expression, and chromatin state classification (Li et al., 
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2023). In contrast, unsupervised approaches are particularly valuable when data lacks labels, 

as they are autonomously capable in discovering patterns and relationships within the data 
(Kang et al., 2022). Autoencoders (AEs) are neural network models that learn efficient 

representations of data by compressing it into a lower-dimensional space and then 
reconstructing the original data (self-supervised learning). Unlike other dimensionality 

reduction techniques like Principal Component Analysis (PCA) and Uniform manifold 
approximation and projection (UMAP) which reduce dimensions through methods such as 

eigen decomposition or neighborhood embeddings, AEs rely on DL. Variational Autoencoders 
(VAEs) are the probabilistic extension of AEs that encode instances as a continuous 

distribution rather than a single data point, allowing also to generate new instances. Generally, 
VAEs have demonstrated better performance compared to AEs and other dimensionality 

reduction methods (e.g. PCA), although the differences were not substantial. VAEs and their 

variations have shown promise as powerful tools for analyzing data coming from single-cell 
RNA sequencing (Lopez et al., 2018; Lotfollahi et al., 2019; Eraslan et al., 2019; Grønbech et 

al., 2020) and bulk RNA sequencing (RNA-seq) (Way and Greene, 2018; Eltager et al., 2023; 
Mora et al., 2022).  

VAEs have been employed for multi-omics (bulk) data integration to investigate gene 
regulation during mouse CNS development, where the model captured transcriptomic and 

epigenomic gene patterns over time and across tissues (Mora et al., 2022). Here, VAEs were 
applied for the first time by transposing the data matrix representing genes as individual data 

points defined by experimental features collected across different times, tissues and 
conditions. This transformation effectively increased the number of instances (genes) and 

reduced the number of features, directly addressing the High-dimension and low-sample-size 

(HDLSS) data sets problem. This method underscores the flexibility of VAEs in restructuring 
data to uncover biologically meaningful patterns across complex, dynamic systems. In another 

study, a VAE model was applied on DNA methylation data from lung cancer samples, 
uncovering latent features that distinguish cancer subtypes despite using an unsupervised 

approach (Wang and Wang, 2019). Another piece of work introduced the roadmap-ENCODE 
Variational Auto-Encoder (RE-VAE), which compresses ChIP-seq signals from promoter and 

enhancer regions across 935 samples from various tissues and histone modification targets. 
Analysis of the RE-VAE latent space revealed that most samples clustered by histone marks, 

but not by tissue or cell type, likely due to the HDLSS dataset problem (Hu et al., 2021).  

Clustering is crucial in bioinformatics for understanding gene functions, cell types, and 
regulatory processes. While traditional clustering methods (e.g. hierarchical clustering, K-

means) can be effective in specific domains, they often struggle with the complexity and 
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variability inherent in biological datasets. Representation learning enables the extraction of 

meaningful patterns from data, creating representations that are easier to interpret and 
process (Karim et al., 2020). DL-based approaches can model non-linear relationships 

between features, leading to more refined and clustering-friendly representations of complex 
data. Studies applying these techniques to multi-omics datasets, such as those from TCGA 

Breast Cancer and TARGET Neuroblastoma, have demonstrated the effectiveness of DL-
driven representations for generating well-balanced and biologically meaningful clusters 

(Viaud et al., 2022).  

1.6 Introducing dimensionality reduction techniques 

1.6.1 Principal component analysis (PCA) 

Principal Component Analysis (PCA) is a widely adopted linear dimensionality reduction 

technique (Pearson, 1901; Hotelling, 1933). PCA seeks to transform high-dimensional data 
into a lower-dimensional space by identifying orthogonal directions, or principal components, 

that capture the maximum variance within the data. Given an input matrix of dimensions 
(	𝑛	 × 𝑑	), where	𝑛 is the number of samples and 𝑑 is the number of features, PCA starts by 

centering the input matrix (subtracting the mean feature-wise) to obtain a zero-centered matrix 
𝑋. The covariance matrix 𝐶 of the matrix 𝑋 is computed as follows: 

 

 𝐶 =
1

𝑛 − 1
𝑋!𝑋 (1) 

 
An eigen decomposition is performed on the covariance matrix 𝐶, yielding eigenvalues and 

eigenvectors. The eigenvectors, also known as principal components (PCs), represent 
directions of maximum variance, while the correspondent eigenvalues indicate the magnitude 

of variance explained by each PC. To project the data into a lower-dimensional subspace, 
PCs are ranked by their eigenvalues (explained variance), the top 𝑘 PCs are selected, with 

𝑘 < 𝑑 and the transformed matrix 𝑍" is given by: 

 
 𝑍" = 	𝑋𝑊" (2) 

 
where 𝑊" is a (	𝑑	 × 𝑘	) matrix of eigenvectors corresponding to the 𝑘 largest eigenvalues. 

The resulting matrix 𝑍" 	represents the data in a 𝑘-dimensional space. While PCA is effective 
for datasets with linear relationships, it is limited in capturing non-linear patterns, for which 

non-linear dimensionality reduction techniques may be more suitable. 
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It is possible to obtain the inverse transformation in PCA, or reconstruction, recovering the 

original feature space from the reduced-dimensional representation 𝑍". This is accomplished 
by reversing the projection. In other words, the matrix 𝑍" is multiplied by the transpose of the 

matrix of the selected eigenvectors 𝑊"
!, to bring it back to the original feature space: 

 

 𝑋0 = 𝑍"𝑊"
! (3) 

 

where 𝑋0 is the reconstruction of the original data matrix 𝑋 and since only the top 𝑘	components 
are employed, some information is lost in the reconstruction process. 

1.6.2 Uniform manifold approximation and projection (UMAP) 

Uniform Manifold Approximation and Projection (UMAP) is a non-linear dimensionality 

reduction technique, that is widely implemented to visualize high-dimensional data in 2D or 

3D (McInnes et al., 2018). UMAP is known for its speed and scalability, often requiring fewer 
neighbors and less computation time than similar techniques like t-Stochastic Neighbor 

Embedding (Maaten and Hinton, 2008), while allowing flexibility to balance local and global 

structure preservation through its tunable parameters. UMAP begins by constructing a k-
nearest neighbor (kNN) graph to capture local relationships in the data, then projects this 

graph into a lower-dimensional space by minimizing a cross-entropy objective function. For 
each data point 𝑥#, it considers its 𝑘	nearest neighbors, denoted as 𝒩# = {𝑥#,%, 𝑥#,&, … , 𝑥#,"}. The 

Gaussian or Radial Basis Function (RBF) kernel is employed to measure the similarity 

between points in the input space, thus, the probability 𝑝'∣# of 𝑥' being a neighbour of 𝑥# 	is 

determined using the following formula: 

 

 
𝑝'|#	 	= 𝑒𝑥𝑝 9−

||𝑥# − 𝑥'||& − 𝜌#
𝜎#

= (4) 

 

 
where ||𝑥# − 𝑥'||& denotes the L2 norm (Euclidean distance), ρ# is the distance from 𝑥# to its 

nearest neighbor:  
 

 𝜌# = 𝑚𝑖𝑛{||𝑥# − 𝑥#,'||&:	𝑥#,' ∈ 𝒩#}	 (5) 

 

 𝜎# is a local scaling parameter for 𝑥#, chosen so that:  
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C𝑒𝑥𝑝9−

|D𝑥# − 𝑥#,'D|& − 𝜌#
𝜎#

= = 𝑙𝑜𝑔&(𝑘)
"

'+%

 (6) 

This formula (4) calculates 𝑝'|#	directly for the case where 𝑥'	is within the neighborhood 𝒩# of 

𝑥#	, otherwise, in the case 𝑥'	is not in 𝒩#, 𝑝'|#	is set to 0. To ensure symmetry in neighborhood 

relationships, UMAP calculates a final pairwise similarity, 𝑝#' between points 𝑥# and 𝑥' 	as: 

 
 𝑝#' ≔ 𝑝'|# +	𝑝#|'	 − 𝑝'|# 𝑝#|'. (7) 

 

This ensures that 𝑝#' = 𝑝'#, making the similarity measure symmetrical. In the low-dimensional 

embedding space, UMAP represents each high-dimensional point 𝑥# 	by a corresponding point 
𝑦# 	in a 𝑝-dimensional space, with 𝑝 ≪ 𝑑. The probability of two points 𝑦# and 𝑦' being 

neighbors in this low-dimensional space is modeled as: 

 
 𝑞#' =

1
1 + 𝑎||𝑦# − 𝑦'||&&.

 (8) 

 

where 𝑎 and 𝑏 are hyperparameters that shape the similarity curve in the embedding space, 
commonly set to 𝑎 ≈ 1.929 and 𝑏 ≈ 0.7915. UMAP aligns the high-dimensional graph with the 

low-dimensional embedding by minimizing the fuzzy cross-entropy cost function, 𝑐%: 
 

 
𝑐% =C C 9𝑝#' 𝑙𝑛 9

𝑝#'
𝑞#'
= + W1 − 𝑝#'X 𝑙𝑛 9

1 − 𝑝#'
1 − 𝑞#'

==
/

'+%,'0#

/

#+%

 (9) 

 

The cost function includes two terms: an attraction term and a repulsion term. When 𝑝#' is high 

the attraction term 𝑙𝑛W𝑝#' 𝑞#'⁄ X encourages 𝑞#' 	to be large, pulling 𝑦# and 𝑦' closer together. 

This term should only appear when 𝑝#' ≠ 0, which means either 𝑥' is a neighbour of 𝑥#, or 𝑥# 	is 

a neighbour of 𝑥', or both. When 𝑝#' is low the repulsion term 𝑙𝑛W1 − 𝑝#' 1 − 𝑞#'⁄ X	encourages 

𝑞#' to be small, pushing 𝑦# and 𝑦' apart. The result is a low-dimensional embedding that 

preserves both the local and global structure of the original data. 

1.6.3 Autoencoders (AE) 

An autoencoder (AE) is a type of neural network architecture designed to firstly efficiently 
compress (encode) input data down to its essential features, and secondly, reconstruct 
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(decode) the original input from this compressed representation (Ballard, 1987). Being the 

target label the input itself, AEs employ a form of self-supervised learning, without needing 
external labels. The simplest form of an autoencoder, often referred to as a vanilla AE, 

consists of an input layer, one or more hidden layers, and an output layer, with no additional 
complexities or architectural variations. Autoencoders architecture can be divided in two parts: 

the encoder and the decoder. The encoder learns to extract non-linear feature relations 
mapping the input into a lower dimensional space (code or latent space), while the decoder 

learns to reconstruct the input from the latent space. The encoder and decoder mapping 
functions are respectively: 

 
 𝑧 = 𝑓1(𝑥) = 𝑠(𝑊2𝑥 + 𝑏2)  (10) 

 

 𝑥 = 𝑔1(𝑧) = 𝑠(𝑊3𝑧 + 𝑏3) (11) 
 

where 𝑠 is a non-linear activation function, 𝑊2 and 𝑊3 are the encoder and decoder weight 
matrices, 𝑏2 and 𝑏3 are the encoder and decoder bias vectors. The encoding function 𝑓1 maps 

the vector 𝑥	(input) into a lower dimensional space obtaining the vector 𝑧	(code). The decoding 
function 𝑔1 	maps the vector 𝑧 (code) back to the output vector �̂� (output) (Figure 1). During 

the training process the network’s weights (W and b) are adjusted with the objective of 
minimizing a loss function (x) which penalize differences between the input vector 𝑥 and the 

reconstructed vector 𝑥.  
 

  𝐿(𝑥, 𝑥) = 𝐿(𝑥, 𝑔1W𝑓1(𝑥)X (12) 

 

When the inputs are real numbers, the Mean Squared Error (MSE) is typically adopted as loss 
function to measure the reconstruction error. The MSE computed per vector is defined as 

follow:  
 

 𝑀𝑆𝐸(𝑥, �̂�) = %
4
∑ (𝑥# − �̂�#)&4
#+% = %

4
‖𝑥	 −	 �̂�‖&&  (13) 

   

where 𝑁 is the number of components (dimensions) of the vector 𝑥 and ‖𝑥	 −	 �̂�‖&& denotes 
the squared L2 norm (Squared Euclidean distance), The square root of the MSE yields the 

Root Mean Squared Error (RMSE), which is often employed for easier interpretation by 
maintaining the same unit as the input data. 
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Figure 1. A schematic representation of the AE architecture, highlighting its main components. 

1.6.4 Variational autoencoder (VAE) 

Variational Autoencoders (VAEs) are a probabilistic extension of autoencoders that aim to 

model the latent space as a continuous distribution often a Gaussian (Kingma and Welling, 
2013). This allows for both dimensionality reduction and the generation of new samples by 

sampling from the latent distribution. The network encoder is connected with two output 
vectors, the mean vector μ and the standard deviation vector σ, which defines a Gaussian 

distribution 𝒩(𝜇, 𝜎). The latent vector z is sampled from the latent vectors sigma and mu and 
to enable backpropagation for the sampling step, the reparameterization trick is applied 

according to the following equation: 
 

 𝑧 = 𝜇 + 𝜎 ⊙ 𝜖, 	 𝜖 ∼ 𝒩(0,1) (14) 

 
where 𝜖 is a random variable sampled from a unit Gaussian distribution 𝒩(0,1). 

The VAE objective function comprises two main terms: the reconstruction loss and the 
Kullback–Leibler Divergence (KLD). As in AEs the reconstruction loss measures the 

difference between the original input 𝑥 and its reconstruction 𝑥. The KLD serves to regularize 
the latent space by minimizing the divergence between the encoder’s learned distribution 

𝒩(𝜇, 𝜎) and a unit Gaussian distribution 𝒩(0,1). This regularization term ensures that the 
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learned latent space is continuous and prevents overfitting by encouraging the latent space to 

follow a Gaussian distribution. The overall loss function 𝐿567 to be minimized is defined as: 
 

 𝐿567 = −𝐸8(𝑧|𝑥)[𝑙𝑜𝑔 𝑝 (𝑥|𝑧)] + 𝐷;<W𝑞(𝑧|𝑥)|𝑝(𝑧)X (15) 

 
where 𝐸8(𝑧|𝑥)[log 𝑝 (𝑥|𝑧)] is the expectation of the log-probability of the reconstruction, and 

𝐷;<W𝑞(𝑧|𝑥)|𝑝(𝑧)X is the KLD between the learned latent distribution 𝑞(𝑧|𝑥) = 𝒩(𝜇, 𝜎) and the 

prior 𝑝(𝑧) = 𝒩(0,1). This latter can be expanded as follows:  

 

 
𝐷;<W𝒩(𝜇, 𝜎)|𝒩(0,1)X = −

1
2
Cp1 + 𝑙𝑜𝑔W𝜎'&X − 𝜇'& − 𝑒

=>?@A!
"Bq

C

'+%

 (16) 

   

Where D	represents the dimensionality of the latent space. By taking the logarithm of 
the variance, the network is forced to output the range of the natural numbers rather than just 

positive values (variance would only have positive values). This allows for smoother 
representations for the latent space. In β-VAE, the loss function is modified by introducing a 

weighting parameter β which controls the trade-off between the reconstruction loss and the 
KLD term (Higgins et al., 2017). This adjustment allows for greater control over the balance 

between the fidelity of data reconstruction and the regularization of the latent space. 

 

Figure 2. A schematic representation of the VAE architecture, highlighting its main components. Unlike 
a standard AE, the VAE integrates a probabilistic latent space and a KLD term within the loss function. 
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1.7 Brief description of the workflow of our study 

Here, we have compiled a RNA-seq and ChIP-seq dataset from publicly available repositories 

(Wamstad et al., 2012), covering four stages of mouse cardiac differentiation and multiple 
histone PTMs. We separately preprocessed and normalized RNA-seq and ChIP-seq data 

before concatenating them as set of experimental features. By this way, each gene was 
represented as a data point, defined by a set of features collected across different time points 

during cardiac differentiation. Next, we have evaluated data reconstruction performance after 
dimensionality reduction using VAEs, AEs, PCA, and UMAP. The dataset was split into 

training, validation, and testing sets to optimize DL hyperparameters and assess 
generalization capabilities. Among the models, VAE delivered the best reconstruction scores, 

with AE and PCA scoring similarly, and UMAP the worst. In the final step, we have utilized the 

VAE encoder to map genes in a unified latent space and then we have performed clustering 
on the resulting gene representations, identifying interesting groups of genes previously not 

documented to share certain transcriptomic and epigenomic patterns along cardiac 
differentiation. 

2 Methods 

2.1 Dataset construction 

2.1.1 RNA-seq and ChIP-seq raw data fetching  

Transcriptomics and epigenomics raw data were downloaded as FASTQ files from the 

Sequence Read Archive (SRA), by the following Gene Expression Omnibus (GEO) (Clough 

et al., 2024) project accessions: GSE47948 and GSE47949 (Wamstad et al., 2012). To 
manage data programmatically, metadata tables were downloaded from the European 

Nucleotide Archive (ENA) projects repositories (Leinonen et al., 2010). RNA-seq data were 
available as eight experiments comprising of two replicates in four cardiac differentiation 

stages in mouse: Embryonic Stem Cells (ESC), Mesoderm (MES), Cardiac Precursors (CP), 
and Cardiomyocytes (CM). ChIP-seq data were available for the same cell types (CTs), with 

two or three replicates, targeting three histone posttranslational modifications (HMs): 

H3K4me3, H3K27me3, H3K27ac and whole cell extract (WCE) as a control. For consistency 
on the number of replicates across different ChIP-seq targets, only the first two replicates were 

utilized in this study. All FASTQ files were downloaded from SRA by adopting parallel-fastq-
dump (https://github.com/rvalieris/parallel-fastq-dump, v0.6.7) which is a wrapper of fastq-

https://github.com/rvalieris/parallel-fastq-dump
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dump (from NCBI SRA toolkit 3.0.10) that allows to speed-up the downloading process with 

multi-threading (–threads = 12)(Leinonen et al., 2011). 

2.1.2 Gene expression levels and fold-changes  

The RNA-seq experiments of our dataset consisted of paired-end reads of 150 base pairs (bp) 

and they were aligned to the reference mouse genome (GRCm38/mm10) using TopHat2 

v2.0.14 with specific parameters (Kim et al., 2013); the mean inner mate distance was 176 
bp, and the standard deviation of the insert size was 11 bp, mimicking the configuration 

implemented in the original study; the library type was fr-firststrand and the --no-coverage-
search option allowed to skip the exhaustive coverage based search for junctions. The 

alignment was further restricted to report a maximum of one alignment per read (-g 1) to 
exclude reads mapping to multiple locations. Gene annotations were provided using the GTF 

file, generated from the UCSC-RefSeq (refGene) gene annotations downloaded from 
University of California Santa Cruz (UCSC) Genome Browser (Kent et al., 2002; Pruitt et al., 

2014). To increase computational efficiency TopHat2 was run using multi-threading (-p 6) and 
pigz (a parallel version of gzip) was employed to decompress the input FASTQ files. Each 

alignment file (SAM format) was split in two files, corresponding to the positive and negative 

strand alignment, by matching respectively the patterns “XS:A:+” and “XS:A:-“.  
Gene expression was computed for all the genes (n=24919) in UCSC-RefSeq catalog with 

DESeq2 (Love et al., 2014). Expression values were normalized from reads count to 
Fragments Per Kilobase Million (FPKM) to account for gene length and total number of 

mapped reads. For each gene, 6 expression fold-changes (FCs) were computed for all CT 
pairwise combinations (without repetition). FCs were expressed as log2 ratio between the 

average FPKMs in the two replicates of each CT. 

2.1.3 ChIP-seq signals at gene promoter regions 

The ChIP-seq experiments consisted of single-end reads and they were aligned to the 

reference mouse genome (GRCm38/mm10) (Church et al., 2011), using Bowtie2 v2.5.3 with 

default parameters (Langmead and Salzberg, 2012). Unmapped reads and reads with a 
mapping quality (MAPQ) lower than 10 were removed by using SAMtools v1.19.2 (Danecek 

et al., 2021). ChIP-seq reads were counted in all the promoter regions from -2500bp to 

+2500bp with respect to the Transcription Starting Site (TSS) of each gene. The reads counts 
were extracted for all the TSSs present in UCSC-RefSeq considering an average fragment 

size of 250 and normalizing by the total number of reads per sample, with recoverChIPlevels 
tool from SeqCode toolkit v1.0 (Blanco et al., 2021)(in-lab developed). To assign a single 
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value at each gene, the average reads count across different TSSs was computed if a gene 

was annotated with more than one TSS.  

2.1.4 Upload alignment on genome browser and gene filtering 

For both RNA-seq and ChIP-seq, all the output alignment files in SAM format were 

compressed in BAM format with SAMtools, and they were converted in bedGraph format and 

normalized by sequencing depth, running buildChIPprofile tool from SeqCode toolkit. All the 
bedGraph files were uploaded as custom tracks on UCSC Genome Browser to visualize and 

integrate the reads of all the experiments in the genome. 
To exclude genes with very low expression values, only genes having an average FPKM > 

0.5 (across replicates) in at least one CT were retained. Genes having at least one promoter 
region intersecting with low mappability or high signal regions according to ENCODE blacklist 

v2 (Amemiya et al., 2019) were excluded with SeqCode-matchpeaks. Small non-coding RNAs 
and genes mapping on alternative chromosome scaffolds (unlocalized and unplaced clone 

contigs) were excluded from the analysis too. In the end of the filtering, 14,996 of 24,919 
mouse genes were retained. 

2.1.5 Normalization and scaling of RNA-seq and ChIP-seq data 

To normalize RNA-seq values, the FPKM values were log transformed and then they were 

normalized across samples adopting the Z-score normalization. For each gene 𝑖	and for each 

sample 𝑗, 𝑧#' was computed as following: 

 

 𝑥#' = log%D(𝐹𝑃𝐾𝑀#' + 1) (17) 

 

 𝑧#' =
𝑥#' − µ'
𝜎'

 (18) 

 
where 𝑥#' 	is the log10(FPKM+1) of the gene 𝑖 in the sample j, µ' and 𝜎' are the mean and the 

standard deviation in the sample 𝑗. To introduce the 6 RNA logFCs as features at the same 

scale, each logFC feature was divided by its standard deviation without mean centering, to 
not alter the directionality of the signs. To normalize ChIP-seq values across genes, for each 

gene 𝑖	and for each target experiment 𝑗, the enrichment ratio 𝑒#' (named ChIP-level) was 

computed as the log ratio between the number of reads (𝑁) of the target experiment and the 
control of the same cell type.  
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 𝑒#' = log%D
𝑁#' + 1
𝑁#E!F + 1

 (19) 

   

Whole Cell Extract (WCE) was available as control experiment in two replicates, however, 
only the first replicate was adopted for normalization as the second replicate exhibited 

significantly higher background noise. To normalize across samples, the Z-score 
normalization was applied with same procedure explained in the equation 18 by replacing 𝑥#' 

with 𝑒#' . 

2.1.6 Evaluating normalization effects through PCA and correlation analyses 

To check how data transformation and normalization could affect samples similarities, 

distributions were plotted and compared as violin plots and Principal Component Analyses 
(PCAs) were performed in scikit-learn library in python. All the PCAs were run adopting as 

input features the genes and only the first 2 PCs were selected for plotting. A PCA was 
performed on the RNA-seq samples and three PCAs were independently performed by 

grouping ChIP-seq sample based on the target histone modifications (H3K4me3, H3K27me3 

and H3K27ac).  
To further inspect ChIP-seq sample, Kendall’s rank correlation and hierarchical clustering 

were performed in Python implementing the SciPy library (Virtanen et al., 2020). The 
correlation matrix (C) of the input data frame was computed by performing all-vs-all samples 

Kendall’s rank correlation. After that the C matrix was converted to the dissimilarity matrix D 
by subtracting it from 1 (D=1-C). Hierarchical clustering was performed on the D matrix using 

average linkage with optimal ordering. The results were presented as correlation heatmaps 
with dendrograms. Both PCAs and correlation analyses were performed before and after 

normalization to determine the benefit of the corrections. 

2.2 Models training and hyperparameters optimization 

2.2.1 Dataset split 

The input matrix 𝑋 was created by concatenating as features for all the genes their FPKM 

values (n=8), ChIP enrichment signal (n=24) and RNA logFC (n= 6), all independently 
normalized (See section 2.1.5). The input matrix 𝑋 consisted in 14,996 genes as instances 

and 38 features. To compare how the four approaches perform in compressing and 
reconstructing unseen data, the dataset 𝑋 was randomly split in training set 𝑋G (90%) and 

testing set 𝑋G2HG (10%), and 𝑋G2HG	was adopted as hold-out set. The training set 𝑋G	was further 
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split randomly in training set 𝑋GIJ#/ (80%) and validation set 𝑋KJ= (20%), and the 𝑋KJ= was 

implemented to optimize AE and VAE hyperparameters. To check whether the two random 
splits produce balanced feature values distributions, violin plots were generated after each 

split and visually compared (Figure S4). After the performance comparison between the four 
techniques, the best models were retrained on the whole dataset 𝑋 for downstream analysis. 

2.2.2 Custom loss functions for AE and VAE models 

Two custom loss functions 𝐿67 	and 𝐿567 	were designed respectively for the AE and VAE 

models. The general formulas of the loss functions are the following: 
 

 𝐿67 = 	𝑀𝑆𝐸	 −	𝑆L (20) 
 

 𝐿567 = 	𝑀𝑆𝐸	 −	𝑆L + 𝛽 ∙ 𝐷;<	 (21) 
 

Where 𝑀𝑆𝐸	is the mean squared error (13), 𝐷;< is the KL-divergence (16) and 𝑆L is the cosine 
similarity. The 𝑆L measures the cosine of the angle between two non-zero vectors. For two 

vectors 𝑥 (input) and �̂� (reconstructed output), the 𝑆L is defined as: 

 
 𝑆L(𝑥, 𝑥) =

𝑥 ⋅ �̂�
‖𝑥‖‖	�̂�‖

 (22) 

 

Where 𝑥 ⋅ �̂� is the dot product between vectors 𝑥 and �̂�, while ‖𝑥‖	and ‖	�̂�‖	are the norms of 
vectors 𝑥 and 𝑥. The value of 𝑆L(𝑥, �̂�)	spans between -1 and 1. If the two vectors point in the 

same direction, the 𝑆L is 1; if they are orthogonal (perpendicular), the 𝑆L 	is 0; and if they point 
in opposite directions, the 𝑆L 	is -1. Since the objective of the training is to minimize the loss 

function and the 𝑆L must be maximized, the 𝑆L is subtracted from the total loss (20, 21), turning 
it into a minimization problem. This custom loss account for difference in magnitude and 

direction by including both the 𝑀𝑆𝐸 and 𝑆L. The 𝑀𝑆𝐸 minimizes the magnitude difference 
between 𝑥 and �̂�, ensuring numerical similarity. 𝑆L, on the other hand, encourage the 

alignment of the vector’s directions.  

2.2.3 AE and VAE model optimization via random search 

To optimize the hyperparameters of both the AE and VAE models, a random search with 500 
trials was conducted using the Keras library with TensorFlow as backend in Python (Chollet, 

2015; Abadi et al., 2016). For consistency, the same approach and hyperparameter space 
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were applied to both AE and VAE models. In this section, any differences specific to AE or 

VAE will be explicitly noted, otherwise, the descriptions refer to both models collectively. The 
models consisted of an encoder-decoder structure with a six-dimensional (6D) bottleneck 

layer, designed to compress the 38 input features, into a lower-dimensional latent space 
representation. The encoder comprised dense layers with non-linear activation functions and 

the decoder’s architecture mirrored the encoder one.  
Key hyperparameters of this architecture were tuned to optimize performance: activation 

functions, number of activation layers, neuron scaling, batch normalization, batch size, and, 
for the VAE, the 𝛽 parameter. Activation functions introduce non-linearity into the model, which 

allows the AE and VAE to capture complex patterns in the data. Three activation functions 
were explored here: the exponential linear unit (ELU), the scaled exponential linear unit 

(SELU) and the parametric rectified linear unit (PReLU). The ELU and SELU are expressed 

as following: 
 

 𝐸𝐿𝑈(𝑥) = {
	𝑥																𝑖𝑓	𝑥 > 0
	𝛼𝑒M − 𝛼			𝑖𝑓	𝑥 ≤ 0				𝑤𝑖𝑡ℎ	𝑎	 = 	1		 (23) 

 

 𝑆𝐸𝐿𝑈(𝑥) = 𝜆 {
	𝑥																𝑖𝑓	𝑥 > 0
	𝛼𝑒M − 𝛼			𝑖𝑓	𝑥 ≤ 0 			𝑤𝑖𝑡ℎ	𝑎	 = 	1.6733	𝑎𝑛𝑑	𝜆 = 1.0507		 (24) 

 
The PReLU is an advanced variation of the traditional ReLU and Leaky ReLU activation 

functions. As the Leaky ReLU, PReLU solves the gradient vanishing problem, but differently 
from it, it makes the slope of (𝛼) a learnable parameter for negative input values. 

 
 𝑃𝑅𝑒𝐿𝑈(𝑥) = {	𝑥																𝑖𝑓	𝑥 > 0

	𝛼𝑥													𝑖𝑓	𝑥 ≤ 0 (25) 

 
The depth of the network was varied by tuning the number of activation layers, which ranged 

from 2 to 8. This range allowed examination of different model complexities, where deeper 

networks could capture more intricate relations between the features, potentially enhancing 
the representation power at the cost of increased computational demand. Also, to control how 

the neuron count decreases with each successive layer, a neuron scaling factor between 1.0 
and 2.0 was explored. Batch size can affect training time and performance; hence, different 

batch sizes were tested by sampling logarithmically between 16 and 512. The addition of batch 
normalization between activation layers was also tested. For the VAE, the β hyperparameter 

was tested for values lower than 1 to decrease the weight of the KLD term in the loss function 
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(Table 1), thus, leveraging the trade-off between reconstruction accuracy and the 

regularization of the latent space. 

Table 1. AE and VAE hyperparameters optimized through the random search, with their description, 
search space and sampling distribution (*only for VAE). 

Hyperparameter Description Search space Type 

Activation function 
Non-linear activation function in the 
neurons 

SELU, ELU, 
PReLU 

Categorical 

Num. activation 
layers 

Number of activation layers in 
encoder (same in decoder) 

From 2 to 8 
Integer, Linear 
sampling 

Num. neuron scaling 
factor 

Factor by which neuron count 
scales per layer 

From 1.0 to 2.0 
Float, Linear 
sampling 

Batch normalization 
Whether to apply batch 
normalization between layers 

True, False Boolean 

Batch size Size of each training batch From 16 to 512 
Integer, Log 
sampling 

β* 
Weight applied to the KLD term in 

the loss 

From 1×10-9 to 

1×10-1 

Float, Log 

sampling 

 
The optimization process was guided by the objective of minimizing the validation loss, with a 

fixed number of trials (n=500, ~7h of running time). The Adam (Adaptive Moment Estimation) 
optimizer was adopted as training algorithm (Kingma and Ba, 2017). During model training, 

early stopping was employed with a patience value of 14 epochs. If no improvement in 
validation loss was observed within this window, training was stopped, and the best-

performing model weights (lowest validation loss), were restored. This ensured the model 
avoids overfitting and prevents from unnecessary training. Additionally, the learning rate was 

dynamically adjusted using a reduction on plateau strategy and the starting learning rate was 
set to 0.05. When the validation loss plateaued for 2 epochs (Δ𝐿	 ≤ 0.0001), the learning rate 

was reduced by a factor of 0.5. This reduction allowed for finer gradient updates, encouraging 

a stable convergence. 

2.2.4 Comparative evaluation of dimensionality reduction approaches 

To evaluate and compare the performance of different DR approaches in compressing and 

subsequently reconstructing input features, reconstruction error was implemented as scoring 

metric. For each data subset (𝑋GIJ#/, 	𝑋KJ= , 	𝑋G2HG	𝑎𝑛𝑑	𝑋) both 𝑀𝑆𝐸 and 𝑆L were computed 
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vector-wise (gene-wise). The final scores were expressed as the mean, along with the 5th and 

95th percentiles of their respective distributions, providing a robust summary of model 
performance across different data subsets. To make a fair comparison, the dimensionality of 

the latent space (or embedding) was heuristically set to 6 dimensions across all models. PCA 
and UMAP were trained using the scikit-learn and umap-learn libraries in Python, respectively 

(Pedregosa et al., 2011; McInnes et al., 2018). Both PCA and UMAP were trained on the 
𝑋GIJ#/ dataset, after which the 	𝑋G2HG	dataset, which had not been seen during training, was 

passed into the models for compression and subsequent reconstruction of the original 
features. For PCA, the reconstruction of features was possible by applying the inverse 

transformation function from the reduced latent space to the original space (See section 1.6.1). 
In the case of UMAP, the reconstruction was also achievable, but the process was 

computationally complex (scales exponentially with respect to the number of components). 

Specifically, the inverse transformation for the 	𝑋G2HG	 dataset took approximately 0.5 hours to 
compute. Due to this complexity, hyperparameter optimization resulted impractical, and the 

default parameters were used instead. For AE and VAE, the best models identified through 
hyperparameter optimization were selected. These models were trained on the 𝑋GIJ#/ dataset 

and later tested on the unseen 	𝑋G2HG	dataset, allowing for a consistent comparison with the 
PCA and UMAP. Additionally, the four models were retrained on the whole dataset 𝑋 for 

downstream analysis and performance comparison from another perspective. 

2.3 Clustering genes based on their VAE-based representation 

2.3.1 Coefficient of variation on gene expression (stable and variable genes) 

For each gene, its variation in expression across cardiac differentiation (different CTs) was 

measured as coefficient of variation (CV). The 𝐶𝑉# for each gene 𝑖 was computed by dividing 
the standard deviation 𝜎# over the mean µ# 	of the FPKM values across the different replicates 

and CTs (4).  
 

 𝐶𝑉# =
𝜎#
µ#
	 (26) 

 
The CV was computed only for genes having a mean FPKM > 0.5. The gene list was sorted 

by CV values and the top 4000 and bottom 4000 genes were defined respectively as the most 

“Variable” and “Stable” genes. Then for each gene was assigned the cell type with the highest 
FPKM (CTmax) and the CTmax frequencies were computed in both the “Stable” and “Variable” 

genes lists. To functional characterize the genes comprised in the two gene lists, term 
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enrichment analyses were conducted using GSEApy in Python (via the EnrichR API), utilizing 

three gene set libraries: 'KEGG_2019_Mouse', 'WikiPathways_2019_Mouse' and 
'GO_Biological_Process_2023' (Kanehisa and Goto, 2000; Agrawal et al., 2024; Ashburner et 

al., 2000; The Gene Ontology Consortium et al., 2023). The background list for each analysis 
included all genes from the dataset (n=14996). Only the top five significant gene sets were 

reported for each test, based on the adjusted p-value. 

2.3.2 Selection of cell type marker genes across cardiac differentiation 

A reference set of genes was selected to facilitate the latent space characterization and 

visually inspect reconstruction performance. Four well-known expression marker genes for 

each CT were chosen based on prior literature (Figure 3)(Wamstad et al., 2012). Additionally, 
eight more marker genes per CT were selected based on their fold changes (FCs) and 

corresponding p-values from differential expression analysis between CT (Figure S1).  

 

2.3.3 Clustering genes in the latent spaces 

Gaussian mixture model (GMM) is a probabilistic model that assumes all the data points are 

generated from a mixture of a finite number of Gaussian distributions with unknown 

ESC

MES

CP

CM

Figure 3. Gene expression profile of marker genes across cardiac differentiation stages (CT). Four 
marker genes for each CT. 
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parameters, where each Gaussian represents a distinct cluster (Reynolds, 2009). Unlike other 

clustering techniques that require clearly defined cluster boundaries, GMM is ideal for datasets 
where the boundaries between clusters are not well-defined, such as the continuous latent 

spaces produced by VAEs and AEs (Karim et al., 2020).  
In this study, GMM was employed to identify distinct gene clusters starting from the gene 

representation learned in the latent space of the VAE model. The GMM was implemented in 
scikit-learn library in Python (Pedregosa et al., 2011). The number of clusters 𝑘 and the 

covariance type were HPs to be optimized. Thus, a grid search was performed exploring all 
the value combinations of covariance types and 𝑘, with 4 types of covariance (full, tied, 

diagonal, spherical) and 𝑘 spanning from 1 to 100 with steps of 5. To evaluate the 
unsupervised clustering performances and select the best model, three scores were adopted: 

Silhouette score (S-score), Bayesian Information Criterion (BIC) and Akaike Information 

Criterion (AIC). The Silhouette score measures how similar a data point is to its own cluster 
(cohesion) compared to other clusters (separation). It ranges from -1 to 1, where a higher 

score indicates better-defined clusters. The Silhouette score 𝑠# for each point 𝑖 is calculated 
as: 

 
 𝑠# 	=

𝑏# − 𝑎#
max(𝑎# , 𝑏#)

 (27) 

 
where 𝑎# is the average distance between 𝑖 and all other points in the same cluster, and 𝑏# is 

the lowest average distance between 𝑖 and points in a different cluster. A higher average 

Silhouette score (S-score) across all points reflects better clustering. Both BIC and AIC are 
information-theoretic metrics used to balance the trade-off between model fit and complexity. 

The AIC is defined as: 
 

 AIC = −2 ⋅ 𝑙𝑜𝑔 𝐿 + 2𝑝 (28) 
 

And the BIC is defined as: 
 

 BIC = −2 ⋅ 𝑙𝑜𝑔 𝐿 + 𝑝 ⋅ 𝑙𝑜𝑔 𝑛 (29) 
 

where	𝑙𝑜𝑔 𝐿 is the log-likelihood of the model,	𝑝 is the number of parameters in the model, and 

𝑛 is the number of data points. BIC penalizes model complexity more heavily, particularly in 
situations with large datasets. The best hyperparameter combination was selected by 
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analyzing the scores behavior in dependence of the HP values by looking at the score’s curves 

(Figure 4). First, it was possible to notice that the optimal covariance type was the spherical 
one resulting in higher S-score for almost all k values and better BIC for k greater than 30. 

The optimal number of clusters was set to 80 preferring a higher number of clusters to meet 
the objective of the analysis. In the end the GMM assigned each gene to a different cluster, 

yielding to 80 clusters containing on average 187 genes each. 
 

Figure 4. HPs grid-search results, displayed as one line plot for each score on the y-axis (-BIC, -AIC 
and S-score), with number of clusters (k) on the x-axis and the lines colored by covariance type. 
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2.3.4 Clusters characterization and visualization 

Genes with similar expression and epigenetic patterns across differentiation were expected to 

be located close to each other in the latent space, thus grouping into the same cluster. 
Different analyses were conducted for each cluster: intersection with gene lists, ChIP-seq 

TSS-plots, term enrichment and features distribution. 
 For each cluster, the genes intersection with a gene list was calculated as the percentage of 

the gene in the cluster common to the gene list and visualized using tree maps, produced with 
squarify Python library (https://github.com/laserson/squarify). The gene lists were generated 

according to different biological basis. First, the overlap between the gene clusters and gene 
lists based on the coefficient of variation (CV) computed on gene expression (See section 

2.3.1). Five lists were generated: the most variable genes (top 4,000 CV) stratified by their 

CTmax values (ESC, MES, CP, CM) and the most stable genes (bottom 4,000 CV). Similarly, 
to investigate the epigenetic state of the clusters, genes annotated as bivalent or active in 

ESC based on a previous study were intersected with the clusters (Mas et al., 2018).  
For each cluster, averaged ChIP-seq metaplots centered on the Transcription Start Site (TSS) 

were generated independently for each HM (and control) across all CTs, using SeqCode 
(produceTSSplots). A single replicate BAM file was used for each HM/CT combination. The 

fragment length was set to 250 bp, with a sliding window of 50 bp, covering a region from -
2500 to +2500 bp relative to the TSS. Signal profiles were smoothed using a moving rolling 

mean with a window size of 200 bp. To make the plots scales as much comparable as possible 
the maximum y-axis value was set for each CT-HM combination as the maximum value among 

all clusters.  

For each cluster, term enrichment analyses were conducted using GSEApy in Python using 
the same modalities described in section 2.3.1 with the additional gene set library of 

'GO_Molecular_Function_2023'. 
For each cluster, gene expression dynamics across cardiac differentiation was plotted as 

FPKM for a subset of 16 randomly selected genes. Violin and box plots were used to display 
the distribution of all features (replicates average) within each cluster, enabling comparisons 

across clusters to capture the general expression and epigenetic dynamics throughout 
differentiation. 

2.4 Hardware and computational setup 

All analyses were performed on a MacOS Sonoma 14 system installed on a MacBook M1 Pro 

with an 8-cores processor (arm64) and 16GB of RAM. To ensure reproducibility, the source 
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code is available on GitHub (https://github.com/espositomario/CardioDiff-VAE). The 

repository includes all necessary Python notebooks, Bash scripts and R scripts, as well as an 
Anaconda environment configuration file to generate the python environment with the same 

versions adopted here (https://anaconda.com). All plots were generated in Python employing 
matplotlib and seaborn python packages (Hunter, 2007; Waskom, 2021). For computational 

efficiency, we utilized GNU parallel to distribute the SeqCode tools processes 
(recoverChIPlevels, buildChIPprofile and produceTSSplots) in multiple jobs, reducing running 

time. To speed up model training, Keras and TensorFlow were configured to utilize the Metal 
API for GPU acceleration (https://developer.apple.com/metal/tensorflow-plugin/). 

3 Results 
We constructed a dataset of RNA-seq and ChIP-seq data from publicly available resources, 

covering four key cell types (CTs) in cardiac differentiation: Embryonic Stem Cells (ESC), 
Mesoderm (MES), Cardiac Precursors (CP), and Cardiomyocytes (CM) (See section 2.1.1). 

The RNA-seq data comprised eight experiments, with two replicates per CT. For ChIP-seq 
data, we included three histone modifications (HMs), H3K4me3, H3K27ac, and H3K27me3, 

each with two replicates per CT. Out of the 24,919 mouse genes annotated in UCSC-RefSeq, 
14,996 genes met our filtering criteria. We excluded low-expression genes, small non-coding 

RNAs, genes mapping to alternative scaffolds, and those intersecting with ENCODE blacklist 
regions (See section 2.1.4). This curated dataset served as the foundation for all subsequent 

analyses. 

3.1 RNA-seq data normalization reduced distributions skewness 

We log-transformed gene expression values (FPKM) and subsequently applied Z-score 
normalization across samples (See section 2.1.2). The log-transformation reduced skewness 

in the FPKM distributions (Figure 5b), while the Z-score normalization, although not affecting 

much the distributions between samples, it adjusted the scale and mean to resemble those of 
the ChIP-seq features (Figure 5c). To explore the similarity between replicates of the same 

CT and between different CTs, we performed principal component analyses (PCAs). Although 
there were some differences between the PCAs, in all of them it was possible to clearly see a 

trajectory corresponding to the cardiac differentiation (Figure 5a, b, c). PCA performed on the 
log-transformed FPKM values (Figure 5e) showed more similarity between replicates of MES, 

CP and CM experiments, when compared with PCA produced on the FPKM (Figure 5d). 
Apparently, this was due to the log capabilities of mitigate the outliers’ impact on the scale. 
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The PCA after the Z-score normalization did not show noticeable differences (Figure 5f), as 

PCA itself include a mean-centering step, only the division over the standard deviation makes 
the difference with respect to the previous PCA.  

 

 

Figure 5. Gene expression values distributions (a, b, c) and PCA plots (d, e, f) before and after log 
transformation and Z-score normalization. For each replicate, gene expression distributions are shown 
as violin and box plots colored by CT (outliers as points). RNA-seq replicates are showed as dots in the 
PCA plot by their top two PCs (% of variance explained between brackets). 

3.2 ChIP-seq level normalization balanced samples distributions 

We examined the read count distributions (Figure 6a) to identify variations in overall ChIP 

levels across different HMs and between replicates. H3K4me3 exhibited the highest signal 
intensity, followed by H3K27ac, while H3K27me3 showed the weakest signal. This pattern 

aligns with expectations, likely reflecting the differences in antibody affinity for each target, 

which influences the signal ratio between promoter regions and background. We also 
observed variations in overall ChIP levels between replicates. After converting read counts to 

log enrichment ratios (See section 2.1.5), the distributions became less skewed (Figure 6b), 
though discrepancies between replicates and differences in overall ChIP levels across HMs 
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remained. Z-score normalization across samples helped reduce these differences 

substantially (Figure 6c).  

Figure 6. ChIP levels distribution before (a) and after log ratio over the control (WCE) (b) and Z-score 
normalization (c). Distributions are produced per replicates and grouped by cell type and ChIP target. 
Notice the WCE which is no longer used after computed the log ratio. 

To further analyze the data, we applied Kendall’s rank correlation and hierarchical clustering 
to the datasets, both before and after log ratio normalization relative to the control (Figure S2) 

(See section 2.1.6). In both heatmaps, we found a positive correlation across all comparisons 

of H3K4me3 and H3K27ac samples, as expected since both HMs are associated with active 
chromatin regions. In contrast, all H3K27me3 samples showed negative correlations when 

compared with the other HMs, consistent with its association with repressive chromatin. 
The unsupervised clustering dendrograms revealed that one pair of H3K27me3 replicates in 

the MES group failed to cluster together both before and after normalization. After 
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normalization, however, all samples grouped into three distinct clades based on HM (Figure 

S2b), whereas, prior to normalization, two H3K27ac replicates in the ESC group formed a 
separate clade (Figure S2a). 

We also conducted PCAs on samples grouped by HM, both before and after the normalization 
steps (Figure S3). In the PCAs following Z-score normalization (Figure S3c), the differentiation 

trajectory appeared more clearly defined than in the pre-normalization PCAs (Figure S3a, b), 
and replicate aggregation was notably improved. As anticipated, the H3K27me3 replicates 

displayed greater dispersion than the other HMs, likely due to the lower antibody affinity 
associated with this mark.  

3.3 DL models optimization and comparison 

We generated a dataset by combining FPKM values (n=8), ChIP enrichment levels (n=24), 

and RNA log-fold change (logFC) values (n=6) as 38 features across 14,996 genes. We 
assess and compare different dimensionality reduction approaches, including Deep Learning 

(DL) models, Autoencoder (AE) and Variational Autoencoder (VAE) as well as PCA and 

Uniform Manifold Approximation and Projection (UMAP), for their effectiveness in 
compressing and reconstructing gene expression and epigenetic patterns. First, we evaluated 

the generalization capabilities of each technique, specifically by splitting the data into training, 
validation, and testing sets (See section 2.2.1); optimize DL model Hyperparameters (HPs) 

on validation set (See section 2.2.3) and compare reconstruction performances of all methods 
on unseen testing data (See section 2.2.4). Secondly, we retrained the four models on the full 

dataset to obtain a compressed and informative representation of all genes, enabling further 
downstream analysis and reconstruction comparison from another perspective. 

3.3.1 Optimal hyperparameters for DL models 

HPs for AE and VAE were optimized using a 500-trial random search across a broad 

hyperparameter space (See section 2.2.3). The best hyperparameters for AE and VAE were 
nearly identical while in term of reconstruction scores, the VAE achieved a lower Root Mean 

Squared Error (RMSE) and the same cosine similarity (Sc) than AE on validation set (Table 2 
and 3). The best VAE HPs resulted in the PReLU activation function across 3 activation layers, 

batch normalization enabled between activation layers, a neuron scaling factor of 1.0, batch 

size of 128 and beta equal to 1×10-9 (Figure 7). The best AE HPs were the same apart from 
a batch size of 64 and 2 activation layers. Similar scores were achieved for training and 

validation sets indicated no sign of overfitting in both architectures (Figure S6). Examining the 
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frequency of each HP value tested across 500 trials, revealed nearly a uniform distribution for 

all hyperparameters in both AE and VAE models, with no single value appearing significantly 
more often than others (Figure S5). 

 

Figure 7. The variational autoencoder architecture with the best hyperparameters is depicted, 
consisting of three fully connected PReLU activation layers (shown in light grey) with batch 
normalization (BN) layers (shown in dark grey) positioned between them. The architecture includes a 
6-dimensional mean and standard deviation layer, followed by a sampling layer, both highlighted in red. 

3.3.2 VAE as best model in compressing and reconstructing features 

On testing data, VAE outperformed the three other dimensionality reduction methods, 

achieving a RMSE of 0.26 [0.15–0.42] and a Sc of 0.94 [0.83–0.99] (Table 2 and 3). When 

models were trained on the whole dataset, VAE continued to show the lowest reconstruction 
error (Table 2 and 3 and Figure 8a), confirming its suitability as the best-performing 

architecture. When comparing PCA and AE, both showed similar averages and percentiles 
on the testing set and under whole-dataset training conditions, with PCA achieving a higher 

median score in the latter case. In contrast, UMAP consistently showed the lowest scores 
across all data subsets. Hence, the ranking of methods as VAE, PCA, AE, and UMAP was 

consistently observed for both RMSE and Sc (computed on the whole data), with significant 
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differences in score distributions confirmed by the Wilcoxon Signed-Rank test performed for 

all comparisons (p-value < 1×10⁻⁴). 

Table 2. Root Mean Squared Error (RMSE) expressed as average and 5th-95th percentile computed on 
data subsets and when the models are trained on the whole dataset. Lower values indicate more 
similarity between input and reconstructed data. 

 VAE AE PCA UMAP 

Training 0.26 [0.15-0.43] 0.28 [0.16-0.49] 0.29 [0.16-0.48] 0.38 [0.19-0.7] 

Validation 0.26 [0.15-0.42] 0.28 [0.16-0.49] / / 

Testing 0.26 [0.15-0.42] 0.28 [0.15-0.5] 0.29 [0.16-0.48] 0.53 [0.2-1.3] 

Whole 0.24 [0.14-0.42] 0.3 [0.17-0.52] 0.29 [0.16-0.48] 0.37 [0.19-0.68] 

 

Table 3. Cosine similarity (Sc) expressed as average and 5th-95th percentile computed on data subsets 
and when the models are trained on the whole dataset. Higher values indicate more similarity (in term 
of vector directionality) between input and reconstructed data. 

 VAE AE PCA UMAP 

Training 0.94 [0.83-0.99] 0.93 [0.81-0.99] 0.93 [0.79-0.99] 0.89 [0.69-0.98] 

Validation 0.94 [0.83-0.99] 0.94 [0.83-0.99] / / 

Testing 0.94 [0.83-0.99] 0.93 [0.81-0.99] 0.93 [0.8-0.99] 0.68 [-0.56-0.98] 

Whole 0.95 [0.85-0.99] 0.93 [0.81-0.99] 0.93 [0.79-0.99] 0.89 [0.7-0.98] 

 

In Figure 8b, we showed the training history of the VAE model trained on the entire dataset. 

The curves revealed a gradual reduction in loss over the training epochs, with a plateau 
forming toward the final epochs. The Sc curve reached a plateau earlier than the RMSE, 

reflecting their differences in measuring reconstruction error. Additionally, adjusting 
automatically the learning rate based on loss improvement allowed for fine-tuning of the 

parameters, facilitating convergence to an optimal local minimum. To visualize the VAE 
model’s reconstruction capabilities, we generated heatmaps of the original and reconstructed 

values for a selected set of CT marker genes (Figure 8c)(See section 2.3.2). Comparing these 
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heatmaps, we observed that the model successfully captured the expression and epigenetic 

patterns for this subset of genes, with only minor discrepancies. We have examined the gene-
wise reconstruction metrics to assess if the selected subset of genes stood out compared to 

all genes. The subset was randomly distributed along the metric range, rather than 
concentrated in the tail as the best-reconstructed genes, indicating they did not exhibit 

exceptional reconstruction quality (Figure S7).  

3.4 Coefficient of variation to identify the most variable and 
stable genes in cardiac differentiation 

For each gene in mouse, we computed its coefficient of variation (CV) in expression levels 

across cardiac differentiation (See section 2.3.1). Based on CV values, we selected the 4,000 

genes with the lowest CV as the "stable genes" and the 4,000 with the highest CV as the 
"variable genes" (Figure 9a). We stratified these groups by the CT with maximum expression 

(CTmax) and for each group, visualized CTmax frequencies and FPKM distributions. Stable 
genes, expected to include consistently and highly expressed genes, showed higher FPKMs 

and more uniform CTmax distribution (Figure 9b), compared to variable genes, which had peak 

expression concentrated in ESC and CM stages rather than mid-stages (Figure 9c). To 
functionally characterize these groups, we performed term enrichment analyses. Stable genes 

were enriched for housekeeping functions, unrelated to specific CTs (e.g., cytoplasmic 
ribosomal proteins, ribosome, and translation) (Figure 9b). In contrast, variable genes were 

enriched in pathways and functions specific to cardiac differentiation stages, including cardiac 
function (e.g., striated muscle contraction, dilated cardiomyopathy), heart development (in 

WikiPathways and GO Biological Processes), and ESC-related pathways (e.g., Plurinetwork) 
(Figure 9c). To further characterize the four CTmax groups within the variable genes, we 

performed term enrichment analysis separately for each group and the resulting terms 

confirmed the CT specificity of each group (Figure S8).  
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Figure 8. a. Reconstruction comparison of different dimensionality reduction methods, trained on the 
whole data, in term of gene-wise RMSE and Sc scores (**** Wilcoxon’s p value < 1x10-4) b. VAE training 
history recorded at each epoch when training the model on the whole dataset, capturing the loss, 
dynamic learning rate, and reconstruction scores. c. Heatmaps of the original and reconstructed values 
are displayed for a selected set of CT marker genes. LogFC features (standardized) are displayed by 
a color map trimmed from -2.5 to 2.5. The logFCs are ordered by the following CT combinations: 
CM/CP, CM/MES, CM/ESC, CP/MES, CP/ESC, and MES/ESC. 
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Figure 9. Expression CV distribution showing the most stable and variable genes in the tails of the 
distribution (a). Stable genes (b) and variable genes (c) FPKM distributions stratified per CTmax group, 
CTmax frequencies and term enrichment analysis results (top 5 term per gene set). 

3.5 Expression and epigenetic patterns identified by clustering 
genes on the VAE-based representation 

We have used the encoder of the best-performing VAE model as a feature extractor to map 

genes into a cluster-friendly 6D latent space. By applying unsupervised clustering on it, we 
aimed to capture novel groups of genes with similar epigenetic patterns and potentially co-

regulated during the cardiac differentiation. In addition, by projecting the latent space in 2D 
with UMAP, we have visualized how genes distribute based on their features and attributes. 

A scheme depicting the entire workflow is displayed in Figure 10. 
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Figure 10. Schema depicting the approach of VAE-based clustering and visualization. 

3.5.1 Visualize genes in the latent space 

To visualize the latent space distribution of the genes, their corresponding 6D latent vectors 𝜇 

were projected in 2D by UMAP. By coloring the genes according to their coefficient of variation 

(CV), calculated from expression values, particular regions in the UMAP (on the left side) that 
were enriched with genes exhibiting a high CV were revealed (Figure 11b). Cell type marker 

genes, which are expected to show high variation, were indeed concentrated in these regions 
(Figure 11a). Examining UMAP plots colored by gene expression levels during differentiation 

(Figure S9), we observed that genes with the greatest variation were predominantly located 
on the left side of the UMAP, concordantly with the CV distribution. On the other hand, the 

right side contained genes with stable expression throughout differentiation, although with 
differing FPKM levels within the same cell type. This stability was further supported by the low 

CV on the right side of the UMAP, as well as low fold-changes (Figure S10). In the bottom 
right region of the UMAP (Figure 11b, Figure S9), a cluster of points with very high expression 

and low CV likely represented constitutively expressed genes, such as ribosomal or histone 

genes. Interestingly, a distinct cluster emerged in the bottom left containing genes with 
moderate expression levels and lacking active chromatin marks (H3K4me3, H3K27ac). 
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Figure 11. UMAP projection of the genes mapped in the 6-dimensional latent space of the VAE (genes 
as points) a. UMAP with CT marker genes colored according to the CT with maximum expression. b. 
UMAP with genes colored by their expression coefficient of variation across cardiac differentiation (color 
mapped from the 1st to the 99th percentile). 

3.5.2 Genes clustering based on their VAE-based representation 

We optimized and trained a Gaussian Mixture Model (GMM) to cluster genes based on their 

representation encoded in the VAE latent space, resulting in 80 clusters (on average with 
~187 genes each). To have a general view of their composition, we computed the percentages 

of genes in each cluster belonging to some category lists (See section 2.3.4). In Figure 12, 
we observed that genes were distributed homogeneously by expression coefficient of variation 

(CV) category across most clusters. Genes primarily expressed in ESC were found in clusters 
C0, C5, C24, C28, C29, C39, and C77, while those with peak expression in MES clustered in 

C11, C48, and C83. Genes with maximum expression in CP were concentrated in C17, C42, 

and C49, whereas genes peaking in CM were primarily located in clusters C1, C32, C33, C68, 
and C70. Additionally, several clusters primarily contained stable genes (low CV), which likely 

represent genes with consistent expression levels. This aligned with the expectation that, 
during cardiac differentiation, the majority of the 14,996 genes would not exhibit significant 

changes in expression. Certain clusters exhibited a mix of expression peak categories, 
suggesting that they contained genes with expression trends showing multiple peak time 

points, such as, clusters like C48, C67, and C76 showing genes with higher expression in 
MES and CP than in ESC or CM. 

In Figure 13, it was possible to observe the distribution of genes in clusters according to their 

chromatin state previously annotated in mouse ESC (Gonzalez et al., 2021). Several clusters 
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consisted mostly of bivalent or active genes, while some of them seemed to comprise both 

categories in comparable proportions. Due to the high number of clusters and resultant plots, 
an exhaustive analysis is difficult in practice. Moreover, several clusters displayed similar 

features, making the analyses complex. To overcome this, we heuristically selected some 
clusters by scanning the clusters composition in terms of expression CV (Figure 12) and 

chromatin state in ESC (Figure 13), for a more in-depth analysis.  
 

 

Figure 12. Tree maps depicting the percentage of genes in each cluster defined as most variable 
(stratified by CTmax) and most stable in term of expression CV. The max rectangle area corresponds to 
a percentage of 100%. 

Stable

Composition of clusters in terms of variable genes 
(stratified by CTmax) and stable genes
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Figure 13 Tree maps depicting the percentage of genes in each cluster annotated with an active, 
bivalent or other chromatin state in another study (Gonzalez, 2021). The max rectangle area 
corresponds to a percentage of 100%. 

3.5.3 C76: Developmental genes bivalent in ESC  

Cluster 76 (C76) consisted of developmental genes marked by low expression in ESC but 

increasing expression in MES and CP (Figure 14a). In ESCs, these genes exhibited bivalent 
chromatin marks, with high H3K27me3 and moderate H3K4me3 at transcription start sites 

(TSSs), a characteristic feature of genes poised for later activation in developmental contexts 
(Figure 14b). Term enrichment analysis indicated functions in cardiac and neural 

differentiation, with top pathways associated with heart development and neural crest 
specification (Figure 18). 

The genes in this cluster suggested key roles in early heart and neural development. Gata4 

and Gata6, important for various stages of heart development, help drive mesodermal 
patterning and cardiomyocyte differentiation (Maitra et al., 2009). The Wnt pathway genes 

Wnt2 and Wnt5a play roles in cardiac morphogenesis and skeletal development (Kwon et al., 
2007). Hoxb2 and Hoxb3 are critical for anterior posterior axis development in the embryo, 

with Hoxb3 influencing neural crest cell differentiation (Tümpel et al., 2009). Hand1 and Hand2 

Composition of clusters in terms of chromatin state 
annotation in ESC (Gonzalez et al., 2021)
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transcription factors are essential for shaping the heart and neural crest-derived structures 

(George and Firulli, 2019).  
To confirm the general expression trends assigned to this cluster, we randomly selected 16 

genes from Cluster C76 and inspected their expression patterns during differentiation (Figure 
S13a). These genes exhibited no expression in ESC, expression peak in MES or CP and were 

less expressed in CM confirming the general pattern observed in Figure 14a. Examining the 
first gene in the selection, Twist1, in the genome browser it confirmed the cluster’s epigenetic 

pattern, with bivalency in ESC and losing the repression marks in the MES (Figure S14). This 
gene codes for a transcription factor, critical regulator of valve development in the heart 

(Chakraborty et al., 2010). 
 

 

Figure 14. C76: Developmental genes bivalent in ESC. In the top-left, a pictogram illustrates the overall 
gene expression trends along differentiation. In panel (a) features distributions averaged across 
replicates, are grouped by HMs and gene expression (in red) levels, represented as Z-scores on the x-
axis. In panel (b), TSS meta-plots display each HM across distinct CTs, with dashed lines representing 
the corresponding control (Whole Cell Extract) signals for each CT. The y-axis maximum is consistent 
among clusters, set to the maximum y-value among all clusters for each HM and CT combination. 

3.5.4 C70: Silenced genes activated in CM that are non-targets of Polycomb 

Cluster C70 consisted in genes with low expression in early cardiac differentiation stages, 

lacking H3K27me3 marks throughout. H3K4me3 and H3K27ac marks increased from CP to 

CM, corresponding with higher expression. The absence of H3K27me3 in ESC and MES 

C76 (n=79)
Developmental genes bivalent in ESC 

a.

b.

GE
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suggested that these genes were not regulated by Polycomb complexes but might be 

repressed through other mechanisms. 
The overlap with active and bivalent genes showed that only a small subset of this cluster was 

annotated as bivalent or active in ESCs in Gonzalez et al. data (Figure 13). Term enrichment 
analysis highlighted associations with striated muscle contraction and other cardiac functions, 

concordantly to their higher expression in CM (Figure 18). 
Key genes in this cluster related to heart function include Myh6 and Myh7, which encode 

cardiac myosin heavy chains, and Myl2, Myl3, Myl4, and Myl7, which encode light chain 
subunits with distinct roles in atrial and ventricular function (Lu et al., 2022; Sitbon et al., 2020), 

and Tnnt2 and Tnni3, encoding components of the cardiac troponin complex (Joyce et al., 
2023). 

To validate the general expression pattern, we examined 16 randomly selected genes, all of 

which displayed the overall cluster trend of no expression in ESC and MES, with increased 
expression in CP and CM (Figure S13b). UCSC genome browser tracks for genes like Myh7 

and Myh6 (located in tandem) confirmed the absence of the bivalent marks in early stages 
(Figure S15), supported by Gonzalez’s annotation, indicating they are not bivalent in ESCs.  

 

 

Figure 15. C70: Silenced genes activated in CM that are non-targets of Polycomb. General plot 
information is consistent with those described in Figure 14. 
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3.5.5 C48: Bivalent throughout the differentiation and expressed in mid-stages  

Cluster C48 contained genes that appeared to remain bivalent throughout the differentiation 

process but showed expression in both MES and CP stages (Figure 16). The genes in this 
cluster were associated with neurodevelopmental processes, as indicated by the top terms in 

the enrichment analysis (Figure 18). However, the presence of heart development as fifth top 
term in WikiPathways suggested a role also in cardiac development. 

Some example genes in C48 with neurodevelopmental associations included: Alx4 and Msx1, 
required for osteogenesis in the cranial neural crest (Han et al., 2007), and Foxa1 and Foxa2 

which regulate gene networks in multiple organ systems, including differentiation of midbrain 
dopaminergic neurons (Ang, 2009). 

From the random selection of 16 genes, a similar expression pattern emerged across the 

cluster, with moderate expression levels in the MES and CP stages (Figure S13c). When 
examining individual genes, distinct epigenetic patterns emerged. Alx4, Foxa1 and Foxa2 

were low expressed in mid-stages, while also being covered by H3K27me3 marks (Figure 
S16-18). In contrast, Vrtn deviated from the overall trend by lacking the H3K27me3 mark at 

mid-stages (Figure S19).  

 

Figure 16. C48: Bivalent throughout the differentiation and expressed in mid-stages. General plot 
information is consistent with those described in Figure 14 
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3.5.6 C51: Valley-like expression pattern, bivalent in mid-stages 

C51 was characterized by a distinctive "valley-like" pattern in gene expression, with high 

expression levels in the ESC and CM stages and a markedly reduced or nearly absent 
expression in the mid-stages (Figure 17). 

The temporal dynamics of histone modifications supported this valley-shaped expression 
pattern. The repressive mark H3K27me3 was absent in ESC, peaked in MES and CP stages, 

and declined again in CM, suggesting a bivalent state in MES and CP. In contrast, the active 
marks H3K4me3 and H3K27ac showed on average higher peaks in ESC and CM, 

concordantly with the expression peaks at these stages (Figure 17). This alternating pattern 
of histone modifications indicated a shift from an active state in ESC to a bivalent state in the 

mid-stages, followed by reactivation in CM, depicting the "valley-like" expression profile. 

Term enrichment analysis identified "plurinetwork" as the top enriched term in WikiPathways 
for C51 (Figure 18), with ten out of 102 genes belonging to this pathway: Bcam, Klf5, Igfbp3, 

Perp, Esrrb, Pim1, Tfeb, Klf2, Icam1, and Tle5.  
Among the sixteen randomly selected genes in this cluster, all but one displayed the valley-

like expression pattern (Figure S13). Examples illustrating this pattern included Adgre5 and 
Pim1, both of which showed peaks of H3K27me3 only in MES or CP, with H3K4me3 persisting 

along the differentiation, confirming a transient bivalent state during these stages, as observed 
in the genome browser (Figure S20, S21). Pim1 is notable for its role in the "plurinetwork", 

where it promotes cardiomyocyte survival by upregulating c-Kit protein expression (Ebeid et 
al., 2020). However, Pura deviates slightly from this epigenetic pattern, being bivalent 

throughout differentiation despite its expression following a valley-like pattern (Figure S22). 

 

GE
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Figure 17. C51: Valley-like expression pattern, bivalent in mid-stages. General plot information is 
consistent with those described in Figure 14 

 

 

Figure 18. Term enrichment results for the selected clusters. Only the top 5 terms are shown for each 
gene set tested. 

4 Discussion 
The rapid advancement of next-generation sequencing (NGS) has produced vast data 

volumes, highlighting the need for efficient computational methods to extract novel and 
meaningful biological insights. Unsupervised learning for omics data analysis has benefited 

from Deep Learning (DL), with Autoencoders (AEs) being particularly effective (Kang et al., 
2022; Li et al., 2023). Among them, Variational Autoencoders (VAEs) have been used 

successfully to integrate multiomics data in both bulk and single-cell analyses (See section 
1.5). Once the AE model is trained, the encoder component serves as a feature extractor, 

mapping the input in a non-linear and lower dimensional space (latent space). Additionally, 
the use of multiple hidden layers in DL enhances this process, allowing for more effective 

capture of complex relationships within the data. Studies indicate that clustering algorithms 

perform better when using these DL-based feature mappings as input instead of raw data 
(Karim et al., 2020; Viaud et al., 2022).  

Research has extensively mapped the epigenome along stem cell differentiation into 
cardiomyocytes (Wamstad et al., 2012; Paige et al., 2012) and normal heart development 
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(Nord et al., 2013; Gilsbach et al., 2018) reveal a highly dynamic epigenome. The precise 

timing of gene activation and repression is critical and disruptions can lead to congenital heart 
disease (CHD), underscoring the importance of transcriptional and epigenetic regulation 

(Akerberg and Pu, 2020). 
Here, we tested VAEs, AEs and other dimensionality reduction techniques for their ability to 

compress and reconstruct experimental features collected along cardiac differentiation (FPKM 
values, ChIP levels, and RNA log-fold changes), and then we clustered genes based on their 

VAE-based representation. To visualize gene distribution in the VAE latent space, 6D latent 
vectors were projected into 2D using UMAP. The UMAP plot colored by various features 

revealed that genes with similar expression dynamics or chromatin states tended to cluster 
together, indicating that the latent space effectively captures meaningful biological 

relationships. 

By selecting some clusters, we showed how VAE latent code successfully grouped together 
genes based on common features dynamics and biological functions. For instance, cluster 76 

includes genes involved in regulation of heart development, such as Gata4, Gata6, Hand1, 
and Hand2, which exhibited a bivalent state in stem cells and get switched on in the 

mesoderm. A similar expression pattern is observed also in cluster 48, with a peak in MES, 
however, genes in this cluster shows a distinct epigenetic dynamic, with H3K27me3 and 

H3K4me3 present during all the differentiation. Interestingly, term enrichment analysis 
revealed an enrichment of genes associated to neuronal differentiation processes. Cluster 70 

was an example of genes silenced in early stages and activated in the latter phases, important 
in heart function. These genes appeared to be not repressed by Polycomb, since they lacked 

the repression mark in early stages. Lastly, we detected a cluster (51) containing genes 

following a peculiar epigenetic trend, passing from an active state in ESC to a bivalent in mid-
stages and being reactivated in CM, mirrored by expression peaks at differentiation extremes 

and low or absent expression in MES or CP. In conclusion, the analysis of some clusters 
revealed novel and complex gene regulation patterns during cardiac differentiation, including 

transitions from active to bivalent states and reactivation in later stages. 
When comparing VAE, AE, Principal Component Analysis (PCA), and Uniform Manifold 

Approximation and Projection (UMAP) for data compression and reconstruction, the VAE 
consistently outperformed the other methods, both when trained and evaluated on the whole 

dataset and when trained on a subset and tested on unseen data. Notably, PCA achieved 

scores comparable to AE, despite its simplicity and lack of hyperparameter optimization. 
However, PCA showed lower average, and broader distributions in both reconstruction 

scores, compared to VAE. Lastly, UMAP consistently delivered the poorest reconstruction 
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performance. The inverse transformation (reconstruction) in UMAP is possible and easy to 

implement, however, its runtime scales exponentially with the number of components, 
requiring approximately 30 minutes to compute a reconstructing function from the embedding 

in 6 components. This long runtime made hyperparameters search and optimization 
infeasible. Additionally, unlike AEs and VAEs, UMAP is not designed with reconstruction as a 

primary objective, which limits its ability to accurately map data back from the embedding 
space to the original feature space. However, without labeled data, we could only rely on 

reconstruction performance as an indirect measure (proxy) of embedding quality and used it 
to evaluate and compare methods. If ground truth labels were available, clustering accuracy 

metrics such as Adjusted Rand Index (ARI) or Normalized Mutual Information (NMI) would 
offer a more direct evaluation of the models' abilities to preserve meaningful groupings and 

biological patterns in the latent space (or embedding). 

Interestingly, incorporating fold-changes as features alongside FPKMs improved 
reconstruction performance. One explanation could be that while FPKMs captures absolute 

gene expression levels, fold-changes complements it by highlighting relative expression 
changes across cell types, even though they lack information on absolute quantities. 

While analyzing clusters, we observed some “out-of-trend” genes, such as Vrtn in Cluster 48 
and Pura in Cluster 51. The anomalous inclusion of these genes suggests possible 

heterogeneity within clusters, potentially due to inaccuracies in the VAE encoding or in the 
GMM clustering separation. A potential solution could be implementing joint training of the 

VAE and clustering module by incorporating clustering loss alongside VAE loss, optimizing 
the latent space geometry for cluster separation (Karim et al., 2020). Hence, more 

sophisticated and more challenging to implement, deep clustering methods could be explored, 

such as, Deep Embedded Clustering (DEC) which employ a pretraining of the AE and fine-
tuning adding the clustering module and loss (Xie et al., 2016). 

To build on the findings of this study, several potential improvements could enhance the 
analysis pipeline and broaden its applicability. Extending the feature set to include HM levels 

at enhancer regions would provide a more detailed view of gene regulatory dynamics, as 
enhancers are critical in modulating gene expression during differentiation. In such a 

framework, genomic bins could be the input data points of the VAE instead of genes. Testing 
the framework with more diverse biological datasets could further exploit the feature 

compression capabilities of the model. For instance, applying this method to datasets with 

multiple experimental conditions (e.g., healthy vs. cancerous tissue, wild-type vs. knockout 
models), both spatial and temporal dimensions or incorporating additional layer of genome-

wide information, such as chromatin accessibility, DNA methylation, more histone marks, or 
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transcription factor binding data (Mora et al., 2022). Also, more sophisticated approaches to 

feature extraction in ChIP-seq data could improve the modelling of HM levels. For example, 
developing metrics that capture peak shape or chromatin context (Hentges et al., 2022; Oh et 

al., 2020) could provide a more nuanced representation of HM presence. Implementing an 
automated software package could facilitate this multi-step analysis, from data preprocessing 

and feature extraction to model training and clustering, providing an end-to-end pipeline. Such 
a package would not only reduce manual intervention but also make this framework more 

accessible for other researchers, facilitating reproducibility and adaptation in various studies. 
To sum up, this study presents a proof of concept for a VAE-based clustering pipeline 

exploiting the VAE to integrate gene expression and epigenetic dynamics in a unified latent 
space, on which applying clustering. Selected clusters demonstrated the framework ability to 

detect unexpected group of genes with common dynamic features and biological functions, 

indicating its potential for applications in other biological scenarios. 
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6 Supplementary figures 

 

Figure S1. Gene expression profile of additional marker genes selected across cardiac differentiation 
stages (CT). Eight marker genes for each CT (per line) selected based on logFCs. 
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Figure S2. Heatmaps and dendrograms display Kendall’s rank correlation analysis and unsupervised 
hierarchical clustering applied to H3K4me3, H3K27ac, and H3K27me3 datasets, before (a) and after 
(b) log ratio normalization to control (WCE). 

After control 
normalization

Prior to control 
normalization 
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Cell type

ChIP target
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Figure S3. PCAs independently performed by grouping ChIP-seq sample based on the target HM 
(H3K4me3, H3K27me3 and H3K27ac) before normalization (a), after normalizing on control (b) and 
after Z-score normalization (c). Notice the differentiation trajectories recovered after normalizations 
steps (c). Replicates labeled as number 2 in H3K27me3 exhibited lower quality than number 3 in MES, 
CP and CM, thus the replicates 3 were adopted. 
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Figure S4. Feature distribution comparison between data subsets obtained after the first and second 
split. 
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Figure S5. AE (a, top) and VAE (b, top) loss computed on validation set plotted for each HP and 
stratified by HP values. Frequency of each HP value tested across 500 trials, revealing nearly a uniform 
distribution for all hyperparameters in both AE (a, bottom) and VAE (b, bottom) models, with no single 
value appearing significantly more often than others. 
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Figure S6. VAE and AE training history recorded at each epoch when training the model on the training 
set, capturing the loss, dynamic learning rate, and reconstruction scores computed on both training and 
validation sets. 

 

Figure S7. Distributions of reconstruction quality metrics for a subset of selected genes (CT markers) 
compared to all genes. 

AEVAE
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Figure S8. Term enrichment analysis performed on each of the four CTmax groups within the variable 
genes revealing CT specific terms associated with each group. 
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Figure S9. UMAP projection of the genes mapped in the 6-dimensional latent space of the VAE colored 
by input feature (replicates average) (color mapped from the 1st to the 99th percentile). 
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Figure S10. UMAP projection of the genes mapped in the 6-dimensional latent space of the VAE colored 
by logFCs (color mapped from the 1st to the 99th percentile). 
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Figure S11. Feature distributions computed as average between replicates, from cluster 0 to 39. The 
x-axis represents Z-scores, and each subplot title indicates the cluster's gene count in brackets. 
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Figure S12. Feature distributions computed as average between replicates, from cluster 40 to 79. The 
x-axis represents Z-scores, and each subplot title indicates the cluster's gene count in brackets. 
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Figure S13. Expression patterns of 16 randomly selected genes per cluster. Each dot represents a 
replicate. 

a. C76 b. C70

c. C48 d. C51

Cell type
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Figure S14. Twist1 region (C76: Developmental genes bivalent in ESC) shown in the genome browser 
with ChIP-seq experiments (Only one replicate is shown). The red arrow marks the transcription start 
site (TSS) of the gene of interest. Track heights are auto scaled to the maximum value within each 
track, and gene annotations are from UCSC RefSeq (in black). 
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Figure S15. Myh6 and Myh7 region (C70: Silenced genes activated in CM that are non-targets of 
Polycomb). General plot information is consistent with those described in Figure S14.  

Figure S16. Foxa1 region (C48: Bivalent throughout the differentiation and expressed in mid-stages). 
General plot information is consistent with those described in Figure S14. 
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Figure S17. Foxa2 (C48: Bivalent throughout the differentiation and expressed in mid-stages). General 
plot information is consistent with those described in Figure S14. 

 

Figure S18. Alx4 region (C48: Bivalent throughout the differentiation and expressed in mid-stages). 
General plot information is consistent with those described in Figure S14. 
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Figure S19. Vrtn region (C48: Bivalent throughout the differentiation and expressed in mid-stages). 
General plot information is consistent with those described in Figure S14.  

Figure S20. Adgre5 region (C51: Valley-like expression pattern, bivalent in mid-stages). General plot 
information is consistent with those described in Figure S14. 
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Figure S21. Pim1 region (C51: Valley-like expression pattern, bivalent in mid-stages). General plot 
information is consistent with those described in Figure S14. 

Figure S22. Pura region (C51: Valley-like expression pattern, bivalent in mid-stages). General plot 
information is consistent with those described in Figure S14. 


