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How to analyze the enrichment of TFs and histone marks in the genome

e Let’s say we want to identify all the genomic locations bound by a specific TF (the green protein)
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How to analyze the enrichment of TFs and histone marks in the genome

e Let’s say we want to identify all the genomic locations bound by a specific TF (the green protein)

TFs
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histone modifications

1. We use formaldehyde to glue all the proteins bound to DNA (including the ones we’re not
interested in) together with DNA
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How to analyze the enrichment of TFs and histone marks in the genome
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2. We cut the DNA up
into small (approximately
300 bp) fragments




How to analyze the enrichment of TFs and histone marks in the genome

Antibody attached
\ to a bead

2N

3. We isolate the
protein we're
interested in using an
antibody
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How to analyze the enrichment of TFs and histone marks in the genome
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4. We isolate the
proteins bound by the
first antibody with a
second antibody and
wash everything else
away




How to analyze the enrichment of TFs and histone marks in the genome
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5. We reverse the
formaldehyde glue by
warming up everything
and wash away all the
proteins, including histones

6. The obtained DNA
fragments are sequenced
(ChIP-seq) or tested on a
microarray platform
(ChIP-on-chip)




Hands-on sessions

- Session 2

- Session 3.1

Epigenomics course @ UVIC - Beatrice Borsari


https://github.com/bborsari/epigenomics_uvic/wiki/2.-ChIP%E2%80%90seq-processing-and-analysis
https://github.com/bborsari/epigenomics_uvic/wiki/3.1.-EN%E2%80%90TEx-ChIP%E2%80%90seq-data:-how-to-navigate-the-portal-and-run-the-chipnf-pipeline

Single-end vs. paired-end sequencing experiments
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https://www.voutube.com/watch?annotation_id=annotation 228575861&feature=iv&src_vid=womKfikWIxM&v=fCd6B5HRaZ8
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https://www.youtube.com/watch?annotation_id=annotation_228575861&feature=iv&src_vid=womKfikWlxM&v=fCd6B5HRaZ8

Single-end vs. paired-end sequencing experiments

In single-end ChlP-seq experiments we
are sequencing from the 5’ end only

C. A-talling
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https://www.voutube.com/watch?annotation_id=annotation 228575861&feature=iv&src_vid=womKfikWIxM&v=fCd6B5HRaZ8
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https://www.youtube.com/watch?annotation_id=annotation_228575861&feature=iv&src_vid=womKfikWlxM&v=fCd6B5HRaZ8

The statistics behind peak calling in MACS2: how much to shift?
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The statistics behind peak calling in MACS2: how much to shift?

Distribution of tags "
is computed

Reference genome

Profile is generated from ! [

combined tags = .

ot i — = ¥
: — ) can be performed

‘g:;%i{gzgg‘zeem of e J e — on either profile

Fragments are added

To get the real distribution of reads
you can:

1. shift the reads in the direction 5’
— 3’ (default option)

2. Extend the fragments to reach a
fixed fragment length (5" — 3’)

e --no model set to TRUE
(will not apply the shifting
step)

® -—-—extsize <bp>

Park, 2009
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The statistics behind peak calling in MACS2: how much to shift?

Distribution of tags "
is computed

Reference genome To get the real distribution of reads

E you can:
i 1. shift the reads in the direction 5’
: ; — 3’ (default option)

Profile is generated from ! [

combined tags = .
E;)cra?(:rr]nigl; te::Sel’é\apped % Peak identification How much to shift?
: . e — can be performed
‘é";g;;{;;gg‘;m of . J - === on either profile
- ; e — 2. Extend the fragments to reach a
1 o [—
! = fixed fragment length (5" — 3')

Fragments are added

' e --no model set to TRUE
i (will not apply the shifting
: step)
! ® -—-extsize <bp>
Park, 2009
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The statistics behind peak calling in MACS2: how much to shift?

Running MACS2 function predictd, you have to specify:

e the bandwith (—-bw): half of the sonication size
® a high-confidence fold-enrichment (-—-mfold)

2 * bandwith

A A A A
4 N N N N\

ChiP

control

Zhang et al., 2008
https://qgithub.com/taoliu/MACS
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https://github.com/taoliu/MACS

The statistics behind peak calling in MACS2: how much to shift?

Running MACS2 function predictd, you have to specify:

® Dbandwith: half of the sonication size

e mfold: ahigh-confidence fold-enrichment ) )
MACS2 selects 1000 high-quality peaks

with ChIP reads enriched more than
/ mfold with respect to the input.
O R

ChiP

control

N £ e e e e ’ Zhang et al., 2008
https://qgithub.com/taoliu/MACS
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The statistics behind peak calling in MACS2: how much to shift?
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control
s ’ —— Watson tags

—— Crick tags
e By aligning the reads of the set of high-quality =
peaks, MACS2 computes the distance d g
between the summit peaks of the two 8
distributions. 5

e All the tags will be shifted by d/2 towards the 3'.
° —3IOO —2IOO —1I00 (I) 4 (I)O 2:)0 3(;0
Zhang etal,, 2008 Location with respect to the center of Watson and Crick peaks (bp)

https://qgithub.com/taoliu/MACS
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The statistics behind peak calling in MACS2: how are peaks called?

Poisson distribution e gives the probability of a number of events
k occurring in a fixed period of time if
0.40 - ' ' 7 these events occur with a known average
0.35f | A=l rate (or expected value, A) and
0.30} | ¥ A= independently of the time since the last
‘. °© A=10 event
< 0.25¢ '. 3
% 0.20} ('53”_. : e it can also be used for the number of
“o01s} 4 @ : events in other specified intervals such as
o.10l '\ N O"o.h _ distance, area or volume
: [ \g A
o | o
005t / R /& L} y e one parameter (A) captures both the mean
M and the variance of the distribution
0.00'
0 5 10 15 20
k
Ake—,\
f(k;A) =Pr(X =k) = x

Zhang et al., 2008
https://qgithub.com/taoliu/MACS
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The statistics behind peak calling in MACS2: how are peaks called?

kX
(8 3) = Pe(X = K) =
e after shifting the reads by d/2, it slides
2*d 2d windows across the genome

r A Ve A Ve A N e ata given window, the number of
D T events k occurred corresponds to the
— — k) number of reads found

ChIP Lem—s ’ e whatabout A?

Zhang et al., 2008
https://qgithub.com/taoliu/MACS
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The statistics behind peak calling in MACS2: how are peaks called?

Four types of A are defined:

Ak -A
fkA) =Pr(X =k) = :' o A= total number of ChIP reads
- genome size
r e A, =estimated with the same formula as A,
over a window of 1 Kb around the peak
__ A . \r % Y4 % N summit in the control
——— 3 e A, =computed in the control over a window

of 5 Kb around the peak summit

|0J3U0 3Y3 Ul

° )\10k = computed in the control over a window

of 10 Kb around the peak summit

Mo = 15Chg, Do) Agi M)

In the absence of a control, A, and A, are computed on the ChIP sample, while A

Zhang et al., 2008 is removed from the calculation

https://qgithub.com/taoliu/MACS
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Metrics to evaluate a ChIP-seq experiment: NRF

Problems with IP step or
library preparation

PCR-amplification of a limited
set of fragments

Typical ChiIP-seq peak

High degree of redundancy (or
low complexity) in your library

|
= |
|

IllIIIIIIIIIIIIIIIII‘IIIIII.IIIIIIIIIII
Low-complexity ChIP-seq peak

|
|
|
|

[ How to detect this?

Landt et al., 2012
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Metrics to evaluate a ChIP-seq experiment: NRF

Library complexity:
the fraction of DNA fragments that

e are non-redundant
=
W E— Measured by NRF
I [=——=]
== )
B 4L
Typical ChiIP-seq peak
— S Positions in the genome that uniquely
I mapped reads map to
I
I
— e total number of uniquely mapped
—_— ey reads
Low-complexity ChIP-seq peak - /

.

[ NRF 2 0.8 for 10 million uniquely }

Landt et al., 2012 mapped reads
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Metrics to evaluate a ChiP-seq experiment: FRiP

The Eraction of Reads in Peaks (FRiP) measures the global enrichment of a ChIP-seq
experiment:

Number of mapped reads in peaks

Number of mapped reads

FRiP should be 2 0.01 (1%) when calling peaks with MACS2.

Landt et al., 2012
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Workflow of ChIP-seq data analysis

STEP OUTPUT FILES

e ChIP — histone mark /TF
e control (input or I1gG)

ChIP experiment | —— sequencing [ FASTQ files }

Details can be found here.
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https://github.com/bborsari/epigenomics_uvic/wiki/2.-ChIP%E2%80%90seq-processing-and-analysis#2-how-to-analyze-a-chip-seq-experiment-

Workflow of ChIP-seq data analysis

STEP OUTPUT FILES
. ChIP — hist k/TF
ChIP experiment | — sequencing [ FASTQ files } : control (ir:;ﬁ:grr:];é) /
) i e  ChIP — histone mark /TF
mapping [ BAM files } e  control (input or IgG)

Details can be found here.
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https://github.com/bborsari/epigenomics_uvic/wiki/2.-ChIP%E2%80%90seq-processing-and-analysis#2-how-to-analyze-a-chip-seq-experiment-

Workflow of ChIP-seq data analysis

STEP OUTPUT FILES

. ChIP — hist k/TF
ChIP experiment | — sequencing [ FASTQ files } : control (i;ﬁ:s:;é)/

. . e  ChIP — histone mark /TF
e PRAInk [ BAM files } e  control (input or I1gG)
comparison of ChlIP and l
control — positions where cak callin
the histone mark / TF is P &

bound in the genome

Details can be found here.
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https://github.com/bborsari/epigenomics_uvic/wiki/2.-ChIP%E2%80%90seq-processing-and-analysis#2-how-to-analyze-a-chip-seq-experiment-

Workflow of ChIP-seq data analysis

STEP OUTPUT FILES
. ChIP — hist k/TF
ChIP experiment | — sequencing [ FASTQ files } : control (ir:;l?:g:;é) /
. . e  ChIP — histone mark /TF
e PRAInk [ BAM files } e  control (input or I1gG)
] l human-readable binary (compressed)
comparison of ChlIP and — —

control — positions where
the histone mark / TF is
bound in the genome

peak calling

wiggle files — bigWig
BED files — bigBed

Details can be found here.
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https://github.com/bborsari/epigenomics_uvic/wiki/2.-ChIP%E2%80%90seq-processing-and-analysis#2-how-to-analyze-a-chip-seq-experiment-

wiggle (uncompressed) — bigWig (compressed) format

position signal

~— =~
300701 12.5
300702 12.5 v,

5.11265 H3K4me3, H1€ g
300703 12.5 ,H168,H168H3K4me3X 1 >
300704 12.5 0 m—non =
300705 12.5 C y

\
position

Details can be found here.
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https://genome.ucsc.edu/goldenPath/help/wiggle.html

BED (uncompressed) — bigBed (compressed) format

chrom start end

chrl 778356 779466
chrl 779571 780036
chrl 826622 827025
chrl 827238 827781

chrl 869665 870305 Gives regions (chrom, start, end: compulsory parameters) + additional
chrl 903908 905506 . . :

chrl 909982 910507 info (if required).

chrl 923095 926140 Can be used to represent genomic segments:

chrl 940046 943376

chri 958177 961643 ® gene coordinates

Gz, Ga0MEL B e regions where a signal i t ChIP- k

shel.  B7E90S STETen g gnal is present (e.g. seq peaks)

chrl 997962 1002259
chril 1012827 1014613
chrl 1019085 1021751
chrl 1024835 1025452
chrl 1032687 1034419
chrl 1040034 1040965
chrl 1041072 1041407

Details can be found here.
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https://genome.ucsc.edu/FAQ/FAQformat.html#format1

Workflow of ChIP-seq data analysis

STEP OUTPUT FILES

. ChIP — hist k/TF
ChIP experiment | — sequencing [ FASTQ files } : control (ir:i)l?:srr:];é)/

. e  ChIP — histone mark /TF
mapping [ BAM files } e control (input or I1gG) /
] l human-readable binary (compressed)
comparison of ChlIP and — —
control — positions where .
the histone mark / TF is peziR el wiggle files — bigWig
bound in the genome e fold-change signal

BED files — bigBed

® peaks
Details can be found here. k /
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https://github.com/bborsari/epigenomics_uvic/wiki/2.-ChIP%E2%80%90seq-processing-and-analysis#2-how-to-analyze-a-chip-seq-experiment-

Workflow of ChIP-seq data analysis

( STEP OUTPUT FILES
. . . e ChIP — histone mark /TF
o ChIP experiment | — sequencing [ FASTQ files } e control (input or 1gG)
=
o
: |
o
3 e ChIP — histone mark /TF
n'. e PRAInk BAM files e control (input or I1gG)
= <
&)
uQJ ) l human-readable binary (compressed)
(@) comparison of ChIP and ——  ——
g control — positions where K call o
L the histone mark / TF is peax calling wiggle files — bigWig
bound in the genome e fold-change signal
L BED files — bigBed
® peaks
Details can be found here. k /
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https://github.com/bborsari/epigenomics_uvic/wiki/2.-ChIP%E2%80%90seq-processing-and-analysis#3-encode-chip-seq-pipeline-

Workflow of ChIP-seq data analysis

( STEP OUTPUT FILES
. . . e ChIP — histone mark /TF
o ChIP experiment | — sequencing [ FASTQ files } e control (input or 1gG)
=
o
: |
o
® ) ) ® ChIP — histone mark /TF
o e PRAInk [ BAM files } e control (input or I1gG)
= <
(&)
uQJ ) l human-readable binary (compressed)
(@) comparison of ChIP and ——  ——
S control — positions where cak callin . . o
L the histone mark / TF is P & wiggle files — bigWig
bound in the genome e fold-change signal
L BED files — bigBed
® peaks
Here we have seen how to run the pipeline k /
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https://github.com/bborsari/epigenomics_uvic/wiki/3.1.-EN%E2%80%90TEx-ChIP%E2%80%90seq-data:-how-to-navigate-the-portal-and-run-the-ENCODE-pipeline#3-how-to-run-the-encode-chip-seq-pipeline-for-histone-marks-

Downstream analyses

STEP OUTPUT FILES
peak calling e fold-change signal
(bigWig)

e peaks (bigBed)

\

Downstream analyses

\

compare expression
and H3K4me3 signal
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Downstream analyses

STEP OUTPUT FILES
peak calling e fold-change signal
(bigWig)

e peaks (bigBed)

\

Downstream analyses

\

compare expression
and H3K4me3 signal
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Workflow of RNA-seq data analysis

STEP OUTPUT FILES
RNA.-seq — sequencing [ FASTQ files }
experiment
mapping [ BAM files }
quantification [ tsv files — TPMs, read counts, etc. }

we will work with TPMs

Here we have retrieved the TPM matrices
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https://github.com/bborsari/epigenomics_uvic/wiki/3.2.-EN%E2%80%90TEx-ChIP%E2%80%90seq-data:-downstream-analyses#23-retrieve-for-each-tissue-two-sets-of-highly-and-lowly-expressed-genes

Downstream analyses

e Hands-on: we’ll continue with section 3.2
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https://github.com/bborsari/epigenomics_uvic/wiki/3.2.-EN%E2%80%90TEx-ChIP%E2%80%90seq-data:-downstream-analyses

Downstream analyses

Downstream analyses

\

compare expression
and H3K4me3 signal

AN
4 A

Where is the mark located with
respect to a gene?

1
n
1

2
=}
1

el —

ChIP-seq read depth

1
n
1

1 1 1 1 1
-5000  -2500 0 2500 5000
Position relative to TSS

/
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Downstream analyses

Downstream analyses

\

compare expression
and H3K4me3 signal

A

-

Where is the mark located with
respect to a gene?

1
n
1

ChIP-seq read depth
2
1

e —

|
<

1 1 1 1 1
-5000  -2500 0 2500 5000
Position relative to TSS

/

N
Make your own aggregation plot (task 2 of section 3.2.)

e we have used the genome annotation from Gencode (tasks 2.1-2.2)

o  toselect protein-coding genes
o toretrieve the coordinates of the protein-coding genes — BED file

e we have used the TPM matrices to select highly and lowly expressed
protein-coding genes in the two tissues (task 2.3)

e we have plotted the fold-change signal (bigWig file) over promoter regions
(+/-2Kb) (task 2.4)
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https://github.com/bborsari/epigenomics_uvic/wiki/3.2.-EN%E2%80%90TEx-ChIP%E2%80%90seq-data:-downstream-analyses#Make-your-own-aggregation-plot

Downstream analyses

Downstream analyses

\

compare expression
and H3K4me3 signal

A

-

Where is the mark located with
respect to a gene?

ChIP-seq read depth
N
1 1

154
n
1

e —

|
<

1 1 1
2500 0 2500
Position relative to TSS

! 1
-5000 5000

/

-

H3K4me3

ex

~

Correlation between
pression and H3K4me3

expression
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Downstream analyses

Downstream analyses

\

compare expression
and H3K4me3 signal

A
4 N
i 4 ith peaks )
Where is the mark located with 4 Correlation between \ Genes with peaks
expression and H3K4me3 in one tissue and

respect to a gene?

not in the other
TSS
4—‘:—' 220 - i
o = ® o
ﬁ 7.5 % o : /
< 180
(]
35.0 - g 160
({} % 140
% 918 ‘V“'—'—\ T =
1

o] * %
_5(;00 —25‘00 0 25‘00 50‘00 40 60 80 100 120 140 160 180 M x
Position relative to TSS . % e
/ expression / \ (" & /
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Downstream analyses

Downstream analyses

\

compare expression
and H3K4me3 signal

A

-

Where is the mark located with
respect to a gene?

=
n
1

v
(=1
1

e —

|
<

ChIP-seq read depth
S}
1

1 1 1
-2500 0 2500

Position relative to TSS

! 1
-5000 5000

/

-

H3K4me3

Correlation between
expression and H3K4me3

~

40 60 80

expression

100 120 140 160 180

4 Genes with peaks A
in one tissue and

not in the other
T.SS

/

N

/Genes with peaks of\
H3K4me3 and POLR2A

)

H3K4me3
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Chromatin states and the annotation of the genome

promoter region

transcribed/gene body
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Ernst and Kellis, 2010
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The histone
code hypothesis:
specific
combinations of
chromatin
marks encode
distinct
biological
functions




Chromatin states and the annotation of the genome

2 @ B
E EE® Y8 8 o
o u § 8 § 3 § = S5 8§ u ;
8 O 5 £ 3% %53 8§ Coundidae
. O T T T X ¥ X X T = state annotation .
® 2 2 6 17 2 e Chromatin state: a
12 2 6 9 1 combination of histone
13 o o9 § 1 I .
8 T 1 B 2| [Strong enhancer mark§ that is biologically
S 5| o Al 3 5 25 1 ||Strong enhancer meaningful
@ 7 1 1 3 B8 8 6 5 1 ||Weak/poised enhancer
% 2 1 2 18 3 0 6 2 1 ||Weak/poised enhancer e ChromHMM is an algorithm
Bl - + 3 6 3 0 o0 1 1 ;
g 5 o BEBENEE T 2 o 4 1 based on Hidden Markov
MM + ol 3 o o o o o 1 Models that segments the
d ? ;7 g g g g 8 g g 8 genome and assigns
0 0 0 0 0 O 0 O o0 o ||Heterochrom;low signal chromatin states
22 28 19 41 6 5 26 5 13 37 ||Repetitive/CNV
Repetitive/CNV

Chromatin mark observation frequency (%)

Ernst et al., 2011
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Chromatin states and the annotation of the genome

chromHMM workflow:

Get binarized Apply the model
e t meIl(rlze » Learn the model » & get the
i segmentation
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Chromatin states and the annotation of the genome

/
)
a 0 1 1 ® The input files are mapped
[ . .
T 1 0 1 reads, either in BED or BAM
= format
5 o trol ded
© 0 0 1 controls are needed as
3 well
b~ < H3K4me3 .
% e 1 1 0 O  better to use uniquely
o e mapped reads
© H3K79me1
2 Sore: e At each region, chromHMM
3 H3K27me2 assigns a pinhary vector o
o_— H3K27me3d
< Hironcs presence / absence of the

N ke input marks, similarly to the

N VAN AN J i
v ~ ~ peak calling procedure

fixed window

size, e.g. 200 bp
Ernst et al., 2011
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Chromatin states and the annotation of the genome

chromHMM workflow:

Get binarized Apply the model
e t meIl(rlze » Learn the model » & get the
i segmentation

Hidden Markov Models
(HMM)

Epigenomics course @ UVIC - Beatrice Borsari



Chromatin states and the annotation of the genome

Markov chain:

a stochastic model describing a sequence of events in
—
which the probability of each event depends only on
the state recorded in the previous event.
example: register the weather condition day by day

o if we treat it as a Markov chain, the weather
condition in a day depends ONLY on the weather

conditions in the day before
The probability for the 5-days registration “CRRCS" is:
P(CRRCS) = P(C)-P(R|C) -P(R|R) -P(C|R) -P(S| C) C: Clouds
R: Rain
Some biological examples: states F: Fog
o presence / absence of CpG islands S: Sun

o  protein secondary structure (sequence of a
chains and [3 sheets)
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Chromatin states and the annotation of the genome

Hidden Markov Model:

e differently from the Markov chain, in this case the sequence of states
is unknown (hidden).

e the goal of a HMMis to infer the sequence of states by interpreting an
observable sequence

o example:
m observable sequence: primary sequence of a protein (aa
residues)
m hidden path: secondary structure (alternation of a chains
and B sheets)
m question: which is the probability that my observed aa

residue (lysine) belongs to a a chain? C: Clouds
states

-—

o inour case, we have a multivariate profile (not just one histone R: Rain
mark, but a combination of histone marks) F: Fog
m observable sequence: combinations of histone marks S: Sun
(binary presence / absence vector)
m hidden path: genome annotation in chromatin states
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Chromatin states and the annotation of the genome

Emission parameters

o el

In the case of a Hidden Markov Model:

e Dbefore reconstructing the sequence of states (hidden
path), you have to learn about them:

o i.e., understand the characteristics of each state
O in our case: which marks define a specific state?

e During the learning step, it defines:

O  emission probabilities: the probability of a
histone mark to belong to a specific state

State (emission order)
- QO OWoO~NOOTOPAWN =

— —

m e.g. probability of observing a peak of
H3K27ac and being in state 8

H3K27ac
H3K9ac
H3K4me3
H3K4me2
H3K4me1
H3K36me3
H4K20me1
WCE
H3K27me3
CTCF

Ernst and Kellis, 2017
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Chromatin states and the annotation of the genome

Transition parameters
In the case of chromHMM (multivariate HMM):

= 1
e You have to specify the number of chromatin o > .
states (e.g. 11) g 3
® Besides emission probabilities, during the learning _5 4
step, it defines: @ 5
. . . E 6
o transition probabilities: the probability of D, 7
going from state A in position i to state B in g 8
position i+1 “— 9
D
m e.g. probability that | am in state 8 © 10
coming from state 2 @ 11

TAM TOONOOOO ™
il o

State to (emission order)
Ernst and Kellis, 2017
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Chromatin states and the annotation of the genome

In the case of chromHMM (multivariate HMM):

® you can learn transition and emission probabilities in one cell type (e.g. K562) and
apply the learnt model to another cell type (e.g. HelLa-S3)

® you can learn the model in one cell type and apply it to segment the genome in the
same cell type
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Chromatin states and the annotation of the genome

chromHMM workflow:

Get binarized Apply the model
e t meIl(rlze » Learn the model » & get the
il segmentation
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Chromatin states and the annotation of the genome

After the learning step, chromHMM:

® Reconstructs the genome annotation in chromatin states

o For each genomic segment, computes a posterior probability over different
states using a forward-backward algorithm, and assigns the most probable
state

® A tutorial on how to run chromHMM can be found in this paper:
https://www.ncbi.nlm.nih.gov/pubmed/29120462
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https://www.ncbi.nlm.nih.gov/pubmed/29120462

Chromatin states and the annotation of the genome

Comparing chromatin states annotation across different cell lines:

DEPDC1  RPE65 WLSgene GNG12 GADDA45A
Genes  hume  Had —— if DIRAS3 e =
H1 ES | THIN [T T NN T | i 1| | I I | ] NI
Ks62| THER 111 | I | I I I | LT NN AT 170 | |
caMm12878| TN 1 1 [l | | M| M | [N | 1 | T W 1] I |
HepG2 | I 11 1 [ N I ol
HUVEC TN TTHI 1 T 1l | NN | ] | | T ) | 1/
HSMM| _THINT TTT T T TN 11 [ W | [} | | 1 Il [ NN Nl | 1 |
NHLF[_ TN W | L ] | w1 1 - [ 1l 1 I | 1N | H1HH | Il ]
NHEK[ I 1 | | | RN | TH] [THNONTIN TT 17l
HMEC [ I [ |l [ 1] [ ] | i HIEIIE B 1N | ' | I |
! 100 kb !

Ernst et al., 2011
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Hands-on session

® Hands-on session 5

e Contact: beatrice.borsari@crg.eu
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https://github.com/bborsari/epigenomics_uvic/wiki/5.-Distal-regulatory-activity
mailto:beatrice.borsari@crg.eu
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