Studying the transcriptome using RNA-seq

Cecilia Coimbra Klein

UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA

Master in Omics Data Analysis

Outline

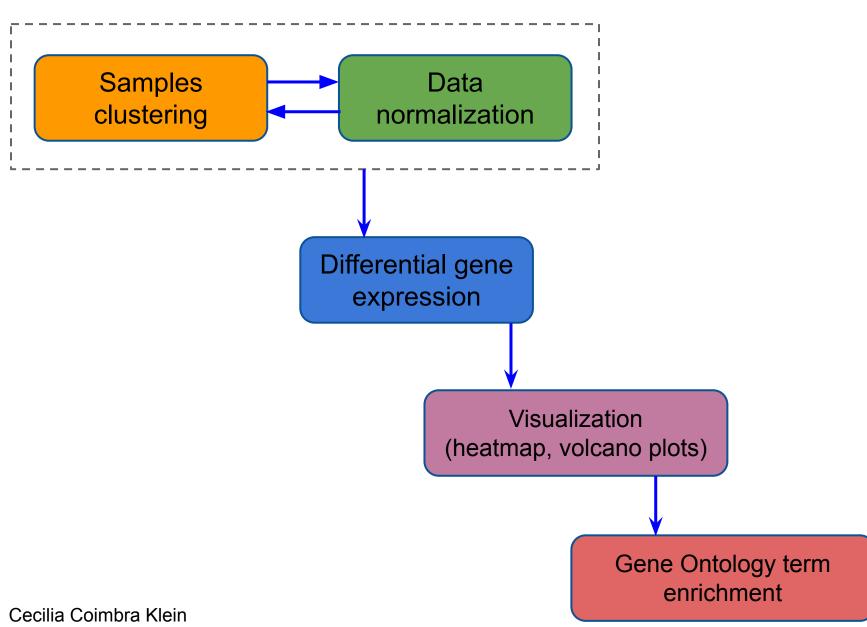
Outline

- 1. Introduction
- 2. Basic concepts
- 3. Short-read RNA-seq data processing
- 4. Gene level RNA-seq data analysis
 - 4.1. Sample clustering based on gene expression
 - 4.2. Differential gene expression
 - 4.3. Gene ontology (GO) term enrichment
- 5. Isoform level RNA-seq analyses
- 6. Regulation of gene expression

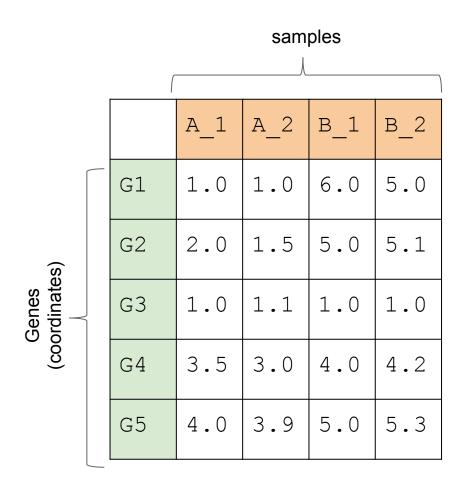
RNA-seq data analysis

Cecilia Coimbra Klein

Analysis pipeline



A practical example: Gene expression matrix

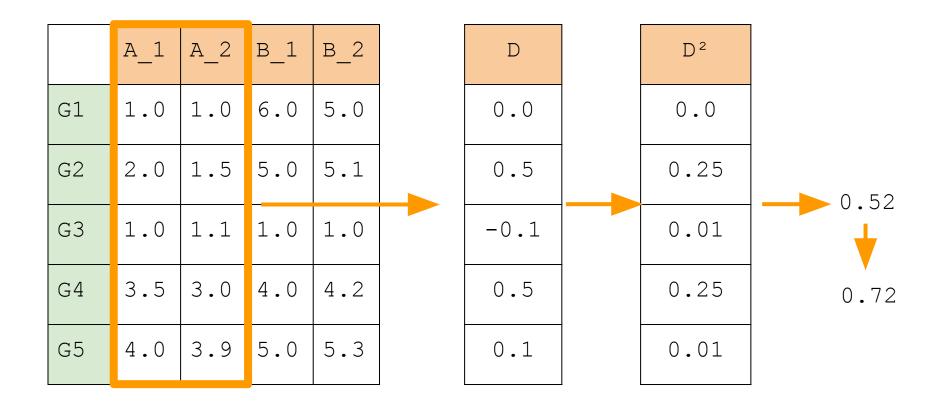


- which samples are more alike and which are more different?
- which genes are more alike and which are more different?
- clustering: grouping genes and/or samples such that similar ones are closer to each other

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

distance matrix

	A_1	A_2	B_1	в_2
A_1				
A_2				
B_1				
B_2				



Euclidean distance:

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	в_2
A_1	0.0	0.72	5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
B_2	5.27			0.0

9

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	B_2
A_1	0.0	0.72	5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
B_2	5.27			0.0

)

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	в_2
A_1	0.0	0.72	5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
в_2	5.27			0.0

1

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	B_2
A_1	0.0	0.72	5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
B_2	5.27			0.0

2

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

5 x 4

	A 1	A 2	в 1	в 2			4 x 4		
		<u>-</u>	<u> </u>	<u> </u>		A 1	A 2	в 1	в 2
G1	1.0	1.0	6.0	5.0		—	—	—	—
					A 1	0.0	0.72	5.9	5.27
G2	2.0	1.5	5.0	5.1					
G3	1.0	1.1	1.0	1.0	A_2	0.72	0.0	6.28	5.69
	1.0		±• 0	1.0					
G4	3.5	3.0	4.0	4.2	B_1	5.94	6.28	0.0	1.07
G5	4.0	3.9	5.0	5.3	B_2	5.27	5.69	1.07	0.0

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

Euclidean distance is not the only way to define distance: manhattan distance, Lipschitz distance, correlation distance, etc. They all measure distance from a different perspective.

Cecilia Coimbra Klein

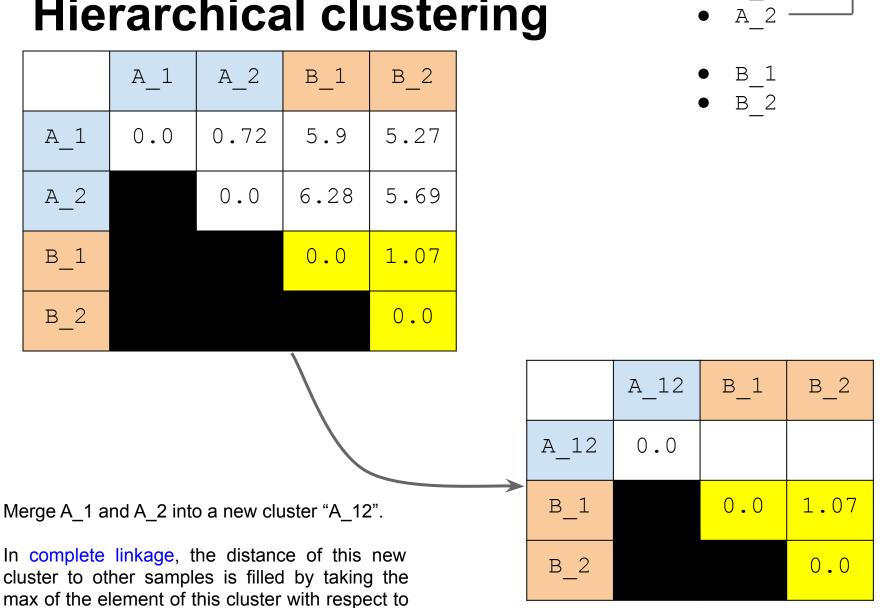
Start by finding the smallest non-diagonal element in the distance matrix. Merge these two samples together.

	A_1	A_2	B_1	B_2	
A_1	0.0	0.72	5.9	5.27	• A_1 • A_2
A_2		0.0	6.28	5.69	• B_1
B_1			0.0	1.07	• B_2
B_2				0.0	hierarchical clustering
					bc de
					def

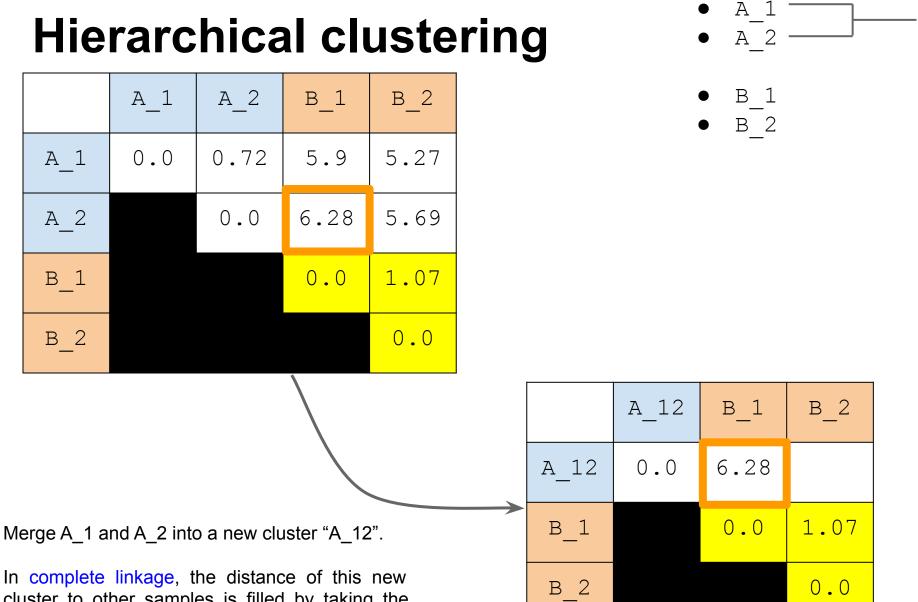
bcdef

abcde

each sample.



ΑJ



In complete linkage, the distance of this new cluster to other samples is filled by taking the max of the element of this cluster with respect to each sample.

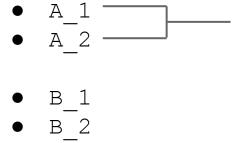
A 1

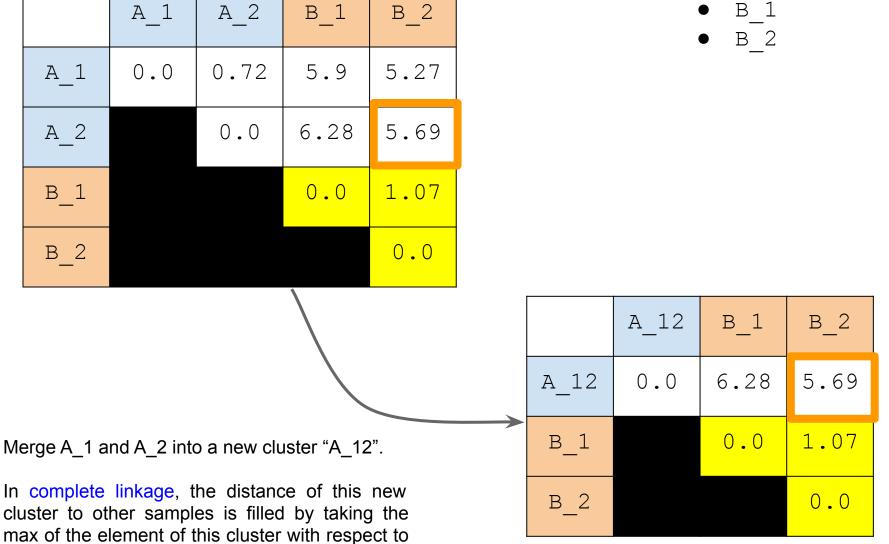
A 2

В 1

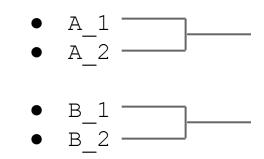
B_2

each sample.

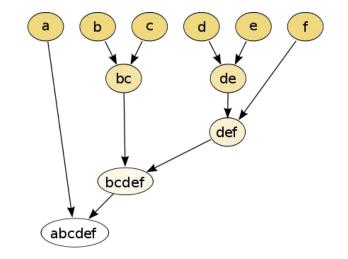




Now the merging is done, we find the smallest distance again.



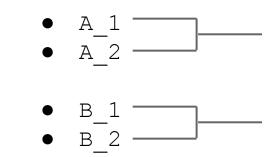
	A_12	B_1	B_2
A_12	0.0	6.28	5.69
B_1		0.0	1.07
B_2			0.0

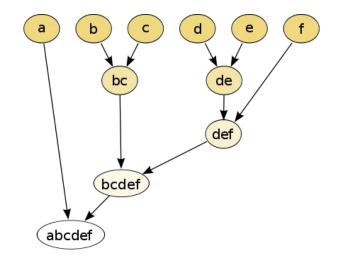


We recompute the distance matrix by selecting the maximum...

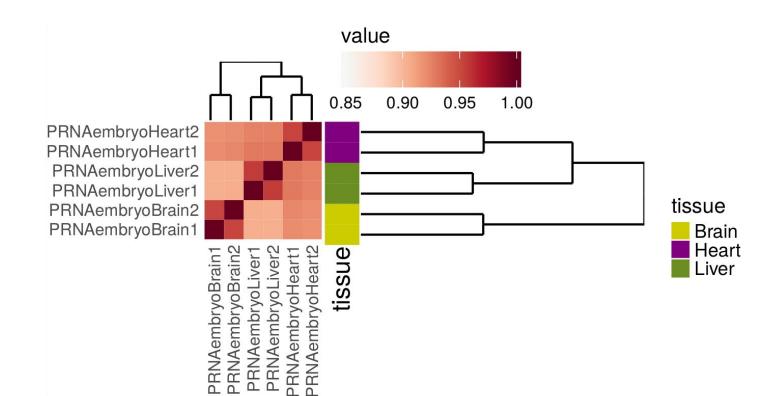
	A_12	B_1	B_2
A_12	0.0	6.28	5.69
B_1		0.0	1.07
B_2			0.0

	A_12	B_12
A_12	0.0	6.28
в_12		0.0





Samples clustering

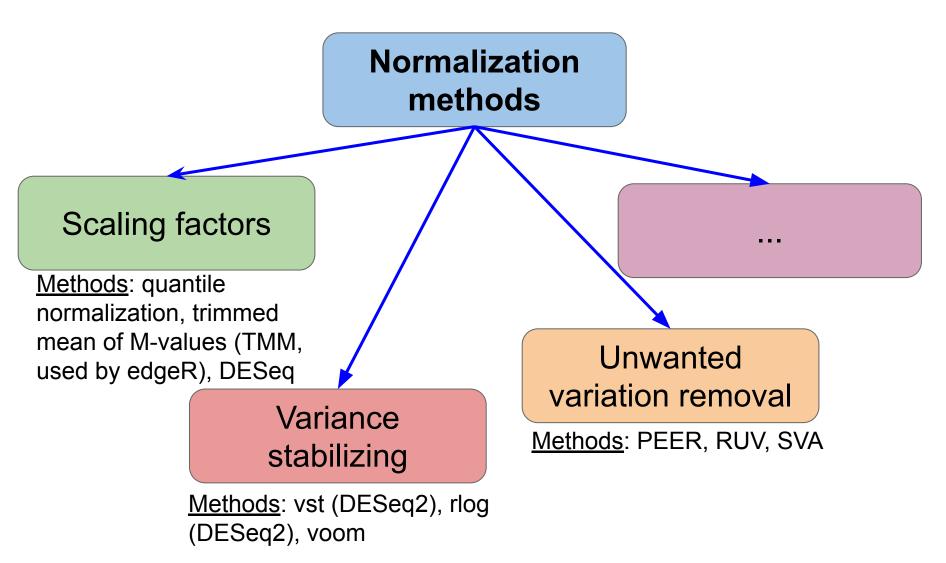


Data normalization

Raw read counts can not be compared directly: different library size, gene length, gene abundance, <u>Normalization</u> <u>allows to:</u>

- Compare different datasets
- Compare different genes
- Remove unwanted variation

Normalization methods



Differential gene expression (DGE)

Aim: identify genes that are more (less) expressed in one sample than in the other

Comparisons:

- pairwise with one factor (most common)
- pairwise with multiple factors
- among more than two samples
- time-series

Always better to have \geq 2 replicates per sample

Soneson, Charlotte, and Mauro Delorenzi. "A comparison of methods for differential expression analysis of RNA-seq data." *BMC bioinformatics* 14.1 (2013): 91.

Differential gene expression (DGE)

Sex	Sample	g ₁	g ₂	9 ₃	
Male	A ₁				
Male	A ₂				
Male	A ₃				
Male	A ₄				
Female	B ₁				
Female	B ₂				
Female	B ₃				
Female	B ₄				

Cecilia Coimbra Klein

Software examples

- edgeR (R package)
 - Robinson, McCarthy, Smyth, "EdgeR: a bioconductor package for for differential expression of digital gene expression data."
 Bioinformatics 26(1) (2010): 139-40.
- DESeq (R package)
 - O Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." *Genome biol* 11.10 (2010): R106.

• DESeq2 (R package)

O Love, Michael I., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2." *Genome biology* 15.12 (2014): 550.

voom+limma (R package)

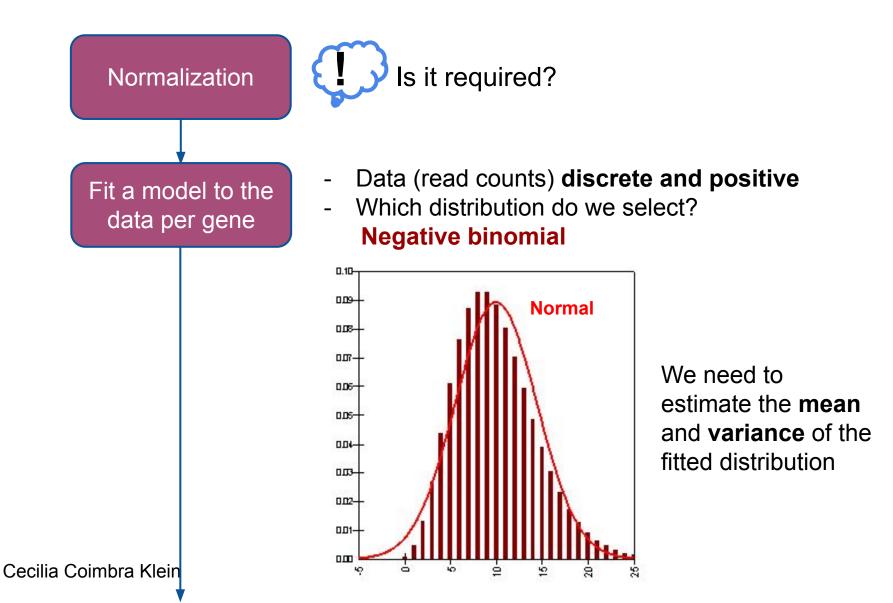
Law, Charity W., et al. "Voom: precision weights unlock linear model analysis tools for RNA-seq read counts." *Genome Biol* 15.2 (2014): R29.

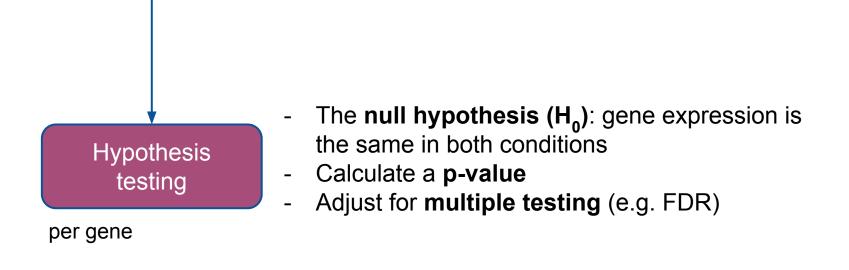
• Cuffdiff 2

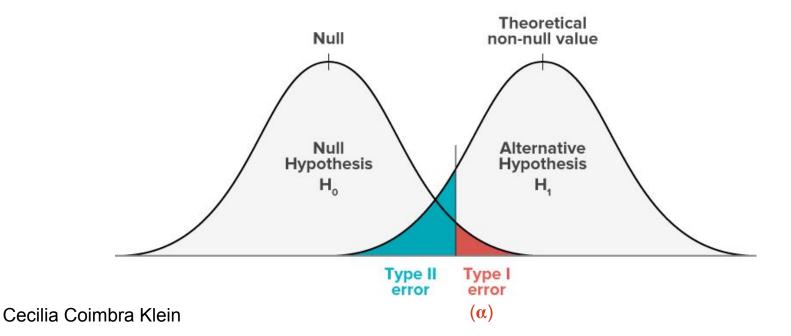
Trapnell, Cole, et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." *Nature biotechnology* 31.1 (2013): 46-53.

Cecilia Coimbra Klein

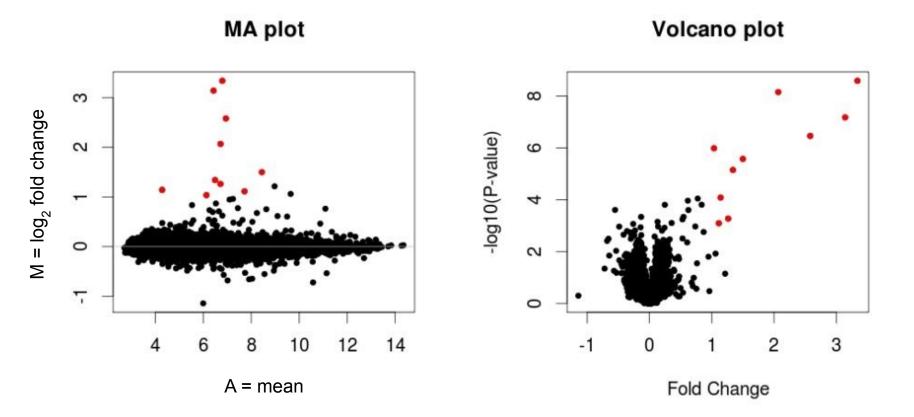
Basics of DGE







Visualization: MA and volcano plots



Cecilia Coimbra Klein

Gene Ontology Term Enrichment

Gene Ontology (GO)

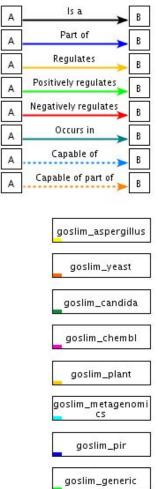
- Allows to capture biological knowledge in a written and computable form.
- Defines concepts/classes used to describe gene function, and relationships between these concepts.
- Controlled vocabulary
- 3 main categories:
 - → Biological Process (BP)
 - \rightarrow Molecular Function (MF)
 - \rightarrow Cellular Component (CC)
- The same gene can have more than oneGO terms

The annotation is both manual and automatic

Cecilia Coimbra Klein

cell organelle cell part intracellular membrane-bo intracellular unded part organelle intracellular organelle intracellular membrane-bo unded organelle nucleus megasporocyte nucleus

cellular component



QuickGO - http://www.ebi.ac.uk/QuickGO

Not good for IncRNAs!

GO:0043076

Gene Ontology Term Enrichment

	extracellular matrix organization			
Term Informa	tion 2			
Name Ontology Synonyms Alternate IDs Definition Comment History Subset	A process that is carried out at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of an extracellular matrix. Source: GOC:mah	Data health 💙		
Annotations	Graph Views Inferred Tree View Neighborhood Mappings			
I GO:0071	0 biological_process 840 cellular component organization or biogenesis 1987 cellular process			

http://amigo.geneontology.org/amigo

Gene Ontology Term Enrichment

Aim: Does my set of genes (identified as differentially expressed) have characteristic GO terms associated to it?

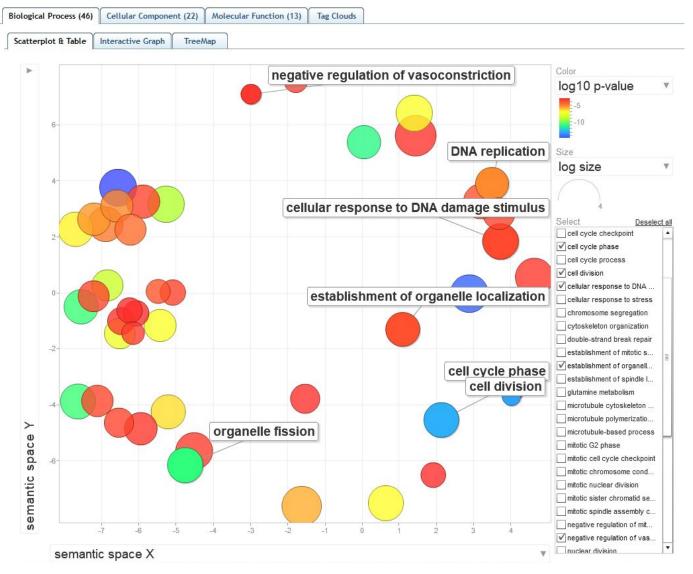
Enrichment: we should look whether GO terms associated to the genes in my set are overrepresented with respect to a background set of genes.

There are many ways to statistically test this, and multiple software available online. One example is the R package GOstats, which can be run locally. It uses a hypergeometric test to assess the enrichment.

Other software: topGO, GOrilla, Metascape

Visualization: REVIGO

http://revigo.irb.hr/



Cecilia Coimbra Klein

https://public-docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/#______gene_level_rna_seq_data_analysis______