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RNA-seq data analysis
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Analysis pipeline

Differential gene 
expression

Visualization 
(heatmap, volcano plots)

Gene Ontology term 
enrichment

Samples 
clustering

Data 
normalization
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A practical example: Gene 
expression matrix

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3
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● which samples are more 
alike and which are 
more different?

● which genes are more 
alike and which are 
more different?

● clustering: grouping 
genes and/or samples 
such that similar ones 
are closer to each other
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1

A_2

B_1

B_2
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.94 5.27

A_2 0.72 0.0

B_1 5.94 0.0

B_2 5.27 0.0

9



Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.94 5.27

A_2 0.72 0.0

B_1 5.94 0.0

B_2 5.27 0.0

10



Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.94 5.27

A_2 0.72 0.0

B_1 5.94 0.0

B_2 5.27 0.0

11



Distance matrix calculation
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.9 5.27

A_2 0.72 0.0 6.28 5.69

B_1 5.94 6.28 0.0 1.07

B_2 5.27 5.69 1.07 0.0
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Euclidean distance is not the only way to define distance: manhattan 
distance, Lipschitz distance, correlation distance, etc.
They all measure distance from a different perspective.

5 x 4
4 x 4



Hierarchical clustering

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.9 5.27

A_2 0.72 0.0 6.28 5.69

B_1 5.94 6.28 0.0 1.07

B_2 5.27 5.69 1.07 0.0
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hierarchical clustering

● A_1
● A_2

● B_1
● B_2

Start by finding the smallest non-diagonal element in the distance matrix. Merge 
these two samples together.



Hierarchical clustering
A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.9 5.27

A_2 0.72 0.0 6.28 5.69

B_1 5.94 6.28 0.0 1.07

B_2 5.27 5.69 1.07 0.0

● A_1
● A_2

● B_1
● B_2
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A_12 B_1 B_2

A_12 0.0

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Merge A_1 and A_2 into a new cluster “A_12”.

In complete linkage, the distance of this new 
cluster to other samples is filled by taking the 
max of the element of this cluster with respect to 
each sample. 
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A_12 B_1 B_2

A_12 0.0 6.28

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Merge A_1 and A_2 into a new cluster “A_12”.

In complete linkage, the distance of this new 
cluster to other samples is filled by taking the 
max of the element of this cluster with respect to 
each sample. 
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A_12 B_1 B_2

A_12 0.0 6.28 5.69

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Merge A_1 and A_2 into a new cluster “A_12”.

In complete linkage, the distance of this new 
cluster to other samples is filled by taking the 
max of the element of this cluster with respect to 
each sample. 



Hierarchical clustering
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A_12 B_1 B_2

A_12 0.0 6.28 5.69

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Now the merging is done, we find the smallest 
distance again.

● A_1
● A_2

● B_1
● B_2



Hierarchical clustering
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A_12 B_12

A_12 0.0 6.28

B_12 0.72 0.0

We recompute the distance matrix by selecting
the maximum...

● A_1
● A_2

● B_1
● B_2

A_12 B_1 B_2

A_12 0.0 6.28 5.69

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0
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Samples clustering
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Data normalization 
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Raw read counts can not be compared directly: different 
library size, gene length, gene abundance, Normalization 
allows to:

● Compare different datasets

● Compare different genes 

● Remove unwanted variation
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Normalization methods
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Normalization 
methods

Scaling factors

Unwanted 
variation removal

Variance 
stabilizing

...
Methods: quantile 
normalization, trimmed 
mean of M-values (TMM, 
used by edgeR), DESeq

Methods: vst (DESeq2), rlog 
(DESeq2), voom 

Methods: PEER, RUV, SVA
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Differential gene expression (DGE)
Aim: identify genes that are more (less) expressed in one 
sample than in the other

Comparisons:
● pairwise with one factor (most common)
● pairwise with multiple factors
● among more than two samples
● time-series

Always better to have ≥ 2 replicates per sample!

23

Soneson, Charlotte, and Mauro Delorenzi. "A comparison of methods for differential 
expression analysis of RNA-seq data." BMC bioinformatics 14.1 (2013): 91.
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Differential gene expression (DGE)
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Sex Sample g1 g2 g3 ...

Male A1

Male A2

Male A3

Male A4

Female B1

Female B2

Female B3

Female B4
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Software examples

● edgeR (R package) 
○ Robinson, McCarthy, Smyth, "EdgeR: a bioconductor package for for differential expression of digital gene expression data." 

Bioinformatics 26(1) (2010): 139-40.

● DESeq (R package) 
○ Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." Genome biol 11.10 (2010): R106.

● DESeq2 (R package)
○ Love, Michael I., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and dispersion for RNA-Seq data with 

DESeq2."Genome biology 15.12 (2014): 550.

● voom+limma (R package)
○ Law, Charity W., et al. "Voom: precision weights unlock linear model analysis tools for RNA-seq read counts." Genome Biol 15.2 

(2014): R29.

● Cuffdiff 2
○ Trapnell, Cole, et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." Nature biotechnology 31.1 

(2013): 46-53.

25
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Normalization

 Basics of DGE

! Is it required?

Fit a model to the 
data per gene

- Data (read counts) discrete and positive
- Which distribution do we select? 

        Negative binomial

Normal

We need to 
estimate the mean 
and variance of the 
fitted distribution
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Hypothesis 
testing

- The null hypothesis (H0): gene expression is 
the same in both conditions

- Calculate a p-value 
- Adjust for multiple testing (e.g. FDR)

per gene

 (𝛂)
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Visualization: MA and volcano plots
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Gene Ontology (GO)
● Allows to capture biological 

knowledge in a written and 
computable form.

● Defines concepts/classes used to 
describe gene function, and 
relationships between these 
concepts. 

● Controlled vocabulary
● 3 main categories:

➔ Biological Process (BP)
➔ Molecular Function (MF)
➔ Cellular Component (CC)

● The same gene can have more than 
oneGO terms

The annotation is both manual and 
automatic

Gene Ontology Term Enrichment

29http://geneontology.org/

GO:0043076

Not good for lncRNAs!!
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Gene Ontology Term Enrichment

http://amigo.geneontology.org/amigo

http://amigo.geneontology.org/amigo
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Aim: Does my set of genes (identified as differentially 
expressed) have characteristic GO terms associated to it?

Enrichment: we should look whether GO terms associated to 
the genes in my set are overrepresented with respect to a 
background set of genes. 

There are many ways to statistically test this, and multiple 
software available online. One example is the R package 
GOstats, which can be run locally. It uses a hypergeometric 
test to assess the enrichment.

Other software: topGO, GOrilla, Metascape 
    

Gene Ontology Term Enrichment

31
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Visualization: REVIGO
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http://revigo.irb.hr/

http://revigo.irb.hr/
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Gene level RNA-seq 
data analysis 4
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https://public-docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/#_
gene_level_rna_seq_data_analysis

https://public-docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/#_gene_level_rna_seq_data_analysis
https://public-docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/#_gene_level_rna_seq_data_analysis

