ERC Drosophila melanogaster

Emilio Palumbo
Amaya Abad
Silvia Perez Lluch
Alessandra Breschi
Cecilia Klein
Marina Ruiz Romero
Roderic Guigo

Lab meeting - 04/11/2015

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Decomposing the variation of gene expression Antisense

Wing compartments

Decomposing the variation of gene expression Differential gene expression - EdgeR

Isoform usage

Next steps

Imaginal discs

Wing imaginal disc

Wing imaginal disc

Wing A/P and D/V boundaries

Developmental stages

Data and goals

- RNASeq
- ChIPSeq
- Differences at transcriptome and chromatin level which distinguish the imaginal discs leading to different organs
- Temporal and spatial transcriptome and chromatin profiling during fly development
- Chromatin dynamics and its role in alternative splicing
- RNASeq: signatures of compartmentalization in wing imaginal discs

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Isoform usage

Next steps

Overview of processed RNA-seq samples

RNA-seq pipeline

Assemby: dm6

Annotation: FlyBase r6.05

Grape pipeline - STAR+RSEM

PCA - selected replicates - $IDR \leq 0.1$

Clustering by gene expression - $IDR \leq 0.1$ (Spearman)

clustering by gene expression - wing compartments - $IDR \leq 0.1$ (Spearman)

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Decomposing the variation of gene expression

Genes with high variation across space Genes with high varitation across time

Antisense

Wing compartments

Isoform usage

Next steps

RNA-seq samples

Decomposing the variation of gene expression across time and space

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Decomposing the variation of gene expression Genes with high variation across space Genes with high variation across time

Antisense

Wing compartments

Isoform usage

Next steps

Genes with high variation across space

Biotype	Cluster1	
mRNA	250	
ncRNA	26	
pseudogene	3	
Biotype	Cluster2	
mRNA	529	
ncRNA	16	
pseudogene	2	

Variance decomposition

Variance decomposition

wing, eye, imaginal, disc, pattern, development, signaling

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Decomposing the variation of gene expression

Genes with high variation across space

Genes with high varitation across time

Antisense

Wing compartments

Isoform usage

Next steps

Genes with high variation across time

Biotype	Cluster1	
mRNA	2584	
ncRNA	82	
pseudogene	16	
rRNA	1	
Biotype	Cluster2	
mRNA	1329	
ncRNA	75	
pseudogene	9	
rRNA	2	

Variance decomposition

wing, eye, imaginal, disc, pattern, development, signaling

Variance decomposition

wing, eye, imaginal, disc, pattern, development, signaling

modENCODE - gene expression cell genes

modENCODE - gene expression age genes

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Decomposing the variation of gene expression

Antisense

Wing compartments

Isoform usage

Next steps

General Information					
Symbol	Dmel\ogre	Species	D. melanogaster		
Name	optic ganglion reduced	Annotation symbol	CG3039		
Feature type	protein_coding_gene	FlyBase ID	FBgn0004646		
Gene Model Status	Current	Stock availability	17 publicly available		
Families, Domains and M	olecular Function				
Gene Group Membership (FlyBase)	INNEXINS				
Protein Family (UniProt, Sequence Similarities)	Belongs to the pannexin family. (ECO:0000255 PROSITE-ProRule:PRU00351). (P27716)				
Protein Domains/Motifs	UniProt (Sequence Similarities)				
	- InterPro				
Mala auto Francisco (a a a	Innexin				
Molecular Function (see GO section for details)					
	Predictions/Assertions				
	gap junction channel activity				
Gene Ontology (GO): (9 terms)					
■ Molecular Function (1					
Terms Based on Experimental Evidence (0 terms) Terms Based on Predictions or Assertions (1 term)					
CV term	Evidence		References		
gap junction channel activ	ity inferred by curator from	GO:0005921	(Bohrmann and Zimmermann, 2008)		
☐ Biological Process (4 terms)					
Terms Based on Experimental Evidence (1 term)					
CV term	Evidence		References		
phototransduction	inferred from mutant ph	enotype	(Curtin et al., 2002)		
Terms Based on Predictions or Assertions (3 terms)					
CV term	Evidence		References		
intercellular transport	inferred from sequence Inx3	or structural similarity with	(Curators, 2008)		
nervous system developm	ent non-traceable author st	atement	(Swiss-Prot Project Members, 1992.8.1)		
visual behavior	inferred from sequence	or structural similarity	(Phelan et al., 1998)		

antisense - negatively correlated

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Decomposing the variation of gene expression

Genes with high variation aross space Genes with high varitation across time modENCODE - chromatin marks

Differential gene expression - EdgeR

Isoform usage

RNA-seq samples

Decomposing the variation of gene expression across time and space

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Decomposing the variation of gene expression

Genes with high variation aross space

Genes with high varitation across time modENCODE - chromatin marks

Differential gene expression - EdgeR

Isoform usage

Genes with high variation across space

Decomposing the variation of gene expression across space

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Decomposing the variation of gene expression

Genes with high variation aross space

Genes with high varitation across time

modENCODE - chromatin marks

Differential gene expression - EdgeR

Isoform usage

Genes with high variation across time

Variance decomposition

Pvalue	Term - Cluster1
1.00401087099388e-09	Protein export
2.43046134848088e-09	Protein processing in endoplasmic reticulum

wing, eye, imaginal, disc, pattern, development, signaling

Variance decomposition

Pvalue	Term - Cluster2
4.12201666158476e-21	DNA replication
7.50087633662912e-12	Mismatch repair
8.1618297773066e-08	Nucleotide excision repair
1.66795771880413e-06	Ribosome biogenesis in eukaryotes
7.98022928115518e-05	Pyrimidine metabolism

wing, eye, imaginal, disc, pattern, development, signaling

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Decomposing the variation of gene expression

Genes with high variation aross space Genes with high varitation across time

modENCODE - chromatin marks

Differential gene expression - EdgeR

Isoform usage

modENCODE - gene expression cell genes

modENCODE - gene expression age genes

The highest peak (measured as the log10 of the signal profiles reported by

modENCODE) within the gene body

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Decomposing the variation of gene expression

Differential gene expression - EdgeR

Space-specific genes - pairwise comparison of wing compartments

Isoform usage

anterior vs posterior - space-specific genes = 44

Biotype	Cluster1	Cluster2
mRNA	13	30
ncRNA	0	1
GO terms	13	27
GO terms (wing, anterior, poste- rior, imaginal disc, development)	9	14

Pvalue	Term BP - Cluster1	
2e-07	wing disc anterior/posterior pattern formation	
1e-06	anterior commissure morphogenesis	
1e-06	forebrain development	
8e-06	anterior/posterior lineage restriction, imaginal	
2e-05	compartment pattern specification	
2e-05	analia development	
2e-05	central nervous system neuron axonogenesis	
3e-05	imaginal disc-derived wing vein specification	
3e-05	central nervous system neuron differentiation	
Pvalue Term BP - Cluster2		
2e-07	cell adhesion	
4e-07	cell morphogenesis involved in differentiation	
2e-06	multicellular organismal development	
5e-06	generation of neurons	
6e-06	neuron development	
1e-05	neuron projection guidance	
2e-05	cell projection morphogenesis	
3e-05	axonogenesis	
4e-05	cellular component morphogenesis	

modEncode for cluster1

modEncode for cluster2

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Decomposing the variation of gene expression

Differential gene expression - EdgeR

Space-specific genes - pairwise comparison of wing compartments

Isoform usage

dorsal vs ventral - space-specific genes = 38

Biotype	Cluster1	Cluster2
mRNA	11	25
ncRNA	0	2
GO terms	11	21
GO terms (wing, dorsal, ventral, imaginal disc, development)	6	9

Pvalue	value Term BP - Cluster1	
4e-06	midgut development	
7e-05	maintenance of epithelial integrity, open tracheal system	
1e-04	embryo development	
1e-04	cell motility	
1e-04	digestive system development	
3e-04	imaginal disc development	
4e-04	post-embryonic development	
7e-04	tissue homeostasis	
7e-04	eye-antennal disc morphogenesis	
Pvalue	Term BP - Cluster2	
3e-06	myoblast migration	
3e-06	fibroblast growth factor receptor signaling pathway	
3e-06	response to fibroblast growth factor	
6e-05	regulation of crystal cell differentiation	
7e-05	cellular response to growth factor stimulus	
1e-04	larval visceral muscle development	
2e-04	glial cell proliferation	
3e-04	larval somatic muscle development	
5e-04	enzyme linked receptor protein signaling pathway	

modEncode for cluster1

modEncode for cluster2

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Isoform usage

Number of isoforms expressed vs annotated

Expression of the major isoform

Shannon entropy of isoform expression

$$H = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

 $\label{eq:higher entropy} \mbox{$->$ isoforms of a given} \\ \mbox{gene are more uniformly expressed}$

vlsvt

- vls.vt (i.e. gene expression contribution estimate)
- var.bwGp (i.e. proportion of variance explained by group classification)
 Here variance means variance in transcript expression.
- var.bwGp.ge(i.e. contribution of gene expression in this variance that is explained by the groups.

3

var.bwGp.ge

0

vlsvt - selected

chr3R:5,234,558-5,260,339 25,782 bp. enter position, gene symbol or search terms go hg38 replaces hg19 as default human ass

UCSC Genome Browser on D. melanogaster Aug. 2014 (BDGP Release 6 + ISO1 MT/dm6) Assembly move <<<< < < < < < < > >> >>>> 200m in 15x 3x 10x base 200m out 15x 3x 10x 100x

chr3R:5,234,558-5,260,339 25,782 bp. enter position, gene symbol or search terms

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Isoform usage

Just sequenced RNA-seq samples

Analysis

- Further characterize AP DV boundaries
- Differences in the relative abbundance of isoforms (Jean Monlong - multiGroupSplicingComp)
- AS events IPSA, AStalavista...
- **.**..
- Suggestions?

obrigado Dank U Merci mahalo Köszi cnacu60 Grazie Thank you mauruuru Takk Gracias Dziękuje Dekujų danke Kiitos