ERC Drosophila melanogaster

Emilio Palumbo
Amaya Abad
Silvia Perez Lluch
Alessandra Breschi
Cecilia Klein
Marina Ruiz Romero
Roderic Guigo

Outline

Introduction
Overview of RNA-seq samples
Wing and eye
Decomposing the variation of gene expression Antisense

Wing compartments
Decomposing the variation of gene expression Differential gene expression - EdgeR

Isoform usage
Next steps

Imaginal discs

Wing imaginal disc

Wing imaginal disc

Wing A/P and D/V boundaries

Developmental stages

Data and goals

- RNASeq
- ChIPSeq
- Differences at transcriptome and chromatin level which distinguish the imaginal discs leading to different organs
- Temporal and spatial transcriptome and chromatin profiling during fly development
- Chromatin dynamics and its role in alternative splicing
- RNASeq: signatures of compartmentalization in wing imaginal discs

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Isoform usage

Next steps

Overview of processed RNA-seq samples

RNA-seq pipeline

- Assemby: dm6
- Annotation: FlyBase r6.05
- Grape pipeline - STAR+RSEM

PCA - selected replicates - IDR $\leqslant 0.1$

17158 genes

wing compartments

Clustering by gene expression - IDR $\leqslant 0.1$ (Spearman)

clustering by gene expression - wing compartments $I D R \leqslant 0.1$ (Spearman)

Outline

Introduction

Overview of RNA-seq samples

Wing and eye
Decomposing the variation of gene expression
Genes with high variation across space
Genes with high varitation across time
Antisense

Wing compartments

Isoform usage

Next steps

RNA-seq samples

Decomposing the variation of gene expression across time and space

Outline

Introduction

Overview of RNA-seq samples

Wing and eye
Decomposing the variation of gene expression
Genes with high variation across space
Genes with high varitation across time

Antisense

Wing compartments

Isoform usage

Next steps

Genes with high variation across space

Biotype	Cluster1
mRNA	250
ncRNA	26
pseudogene	3
Biotype	Cluster2
mRNA	529
ncRNA	16
pseudogene	2

Variance decomposition

topCellGenes $=826$ genes
 cluster $1=279$ genes

Pvalue	Term-Cluster1

wing, eye, imaginal, disc, pattern, development, signaling

Variance decomposition

topCellGenes = 826 genes
 cluster $2=547$ genes

wing, eye, imaginal, disc, pattern, development, signaling

Outline

Introduction

Overview of RNA-seq samples

Wing and eye
Decomposing the variation of gene expression
Genes with high variation across space
Genes with high varitation across time
Antisense

Wing compartments

Isoform usage

Next steps

Genes with high variation across time

Biotype	Cluster1
mRNA	2584
ncRNA	82
pseudogene	16
rRNA	1
Biotype	Cluster2
mRNA	1329
ncRNA	75
pseudogene	9
rRNA	2

Variance decomposition

topAgeGenes $=4098$ genes

cluster $1=2683$ genes

wing, eye, imaginal, disc, pattern, development, signaling

Variance decomposition

wing, eye, imaginal, disc, pattern, development, signaling

modENCODE - gene expression cell genes

modENCODE - gene expression age genes

Outline

Introduction

Overview of RNA-seq samples

Wing and eye
Decomposing the variation of gene expression
Antisense

Wing compartments

Isoform usage

Next steps

antisense - positively correlated

antisense - positively correlated

antisense - positively correlated

UCSC Genome Browser on D. melanogaster Aug. 2014 (BDGP Release 6 + ISO1 MT/dm6) AsseI

k:6,973,620-6,991,318 17,699 bp. enter position, gene symbol or search terms

antisense - positively correlated

UCSC Genome Browser on D. melanogaster Aug. 2014 (BDGP Release 6 + ISO1 MT/dm6) Asse
 X:6,973,620-6,991,318 17,699 bp. enter position, gene symbol or search terms
go hg38 replaces hg19 as default hum

antisense - positively correlated

antisense - positively correlated

```
modENCODE Temporal Expression Data
(modENCODE_mRNA-Seq_U)
\begin{tabular}{ll} 
Styles & [download data (TSV)] \\
Linear \\
Logarithmic \\
Heatmap \\
Scales \\
gene max expression \\
Moderate expression bin max \\
High expression bin max \\
Extremely high expression bin max
\end{tabular}
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Guide to modENCODE expression \\
level colors
\end{tabular} \\
\hline No/Extremely low expression ( \(0-0\) ) \\
very low expression \((1-3)\) \\
Low expression \((4-10)\) \\
Moderate expression (11-25) \\
Moderately high expression (26-50) \\
High expression ( \(51-100)\) \\
Very high expression (101 - 1000) \\
\hline
\end{tabular}
```

Linear, scaled to maximum expression level
Developmental Stage Expression Level
opmental Stage embryo 00-02hr embryo 02-04hr embryo 04-06hr embryo 06-08hr embryo 08-10hr embryo $10-12 \mathrm{~h}$ embryo 10-12hr mbryo $12-14 \mathrm{ht}$ embryo 14-16hr embryo $18-20 \mathrm{hr}$ embryo 20-22hr embryo 22-24hr
larva L1 larva L2 larva L3 12 hr old larva L3 puffistage 1-2 larva L3 puffistage 3-6 larva L3 puffstage 7-9 white prepupae new white prepupae 12 hr white prepupae 24 hr pupae 2d postWPP pupae 3d postWPP pupae 4d postWPP adult male 01day adult male 05day adult male 30day adult female 01day adult female 05day adult female 30day
Expression Level Scale

antisense - positively correlated

antisense - negatively correlated

Outline

Introduction
Overview of RNA-seq samples
Wing and eye
Wing compartments
Decomposing the variation of gene expression
Genes with high variation aross space
Genes with high varitation across timemodENCODE - chromatin marks
Differential gene expression - EdgeR
Isoform usage
Next steps

RNA-seq samples

Decomposing the variation of gene expression across time and space

Sets

Others
Top age genes
Top cell genes

Average
contribution:
Cell 32\%
Age 24\%
Residuals 44\%

Outline

```
Introduction
Overview of RNA-seq samples
Wing and eye
```

Wing compartments
Decomposing the variation of gene expression
Genes with high variation aross space
Genes with high varitation across time
modENCODE - chromatin marks
Differential gene expression - EdgeR

Isoform usage

Next steps

Genes with high variation across space

Decomposing the variation of gene expression across

space

wing, eye, imaginal, disc, pattern, development, signaling

Outline

```
Introduction
Overview of RNA-seq samples
Wing and eye
```

Wing compartments
Decomposing the variation of gene expression
Genes with high variation aross space
Genes with high varitation across time
modENCODE - chromatin marks
Differential gene expression - EdgeR

Isoform usage

Next steps

Genes with high variation across time

[^0]

Variance decomposition

wing, eye, imaginal, disc, pattern, development, signaling

Variance decomposition

wing, eye, imaginal, disc, pattern, development, signaling

Outline

Introduction
Overview of RNA-seq samples
Wing and eye
Wing compartments
Decomposing the variation of gene expression
Genes with high variation aross space
Genes with high varitation across time
modENCODE - chromatin marks
Differential gene expression - EdgeR
Isoform usage
Next steps

modENCODE - gene expression cell genes

The highest peak (measured as the log10 of the signal profiles reported by

modENCODE) within the gene body

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments
Decomposing the variation of gene expression
Differential gene expression - EdgeR
Space-specific genes - pairwise comparison of wing compartments

Isoform usage

Next steps

anterior vs posterior - space-specific genes $=44$

Biotype	Cluster1	Cluster2
mRNA	13	30
ncRNA	0	1

Pvalue	Term BP - Cluster1
$2 \mathrm{e}-07$	wing disc anterior/posterior pattern formation
$1 \mathrm{e}-06$	anterior commissure morphogenesis
$1 \mathrm{e}-06$	forebrain development
$8 \mathrm{e}-06$	anterior/posterior lineage restriction, imaginal
$2 \mathrm{e}-05$	disc
compartment pattern specification	
$2 \mathrm{e}-05$	analia development
$2 \mathrm{e}-05$	central nervous system neuron axonogenesis
$3 \mathrm{e}-05$	imaginal disc-derived wing vein specification
$3 \mathrm{e}-05$	central nervous system neuron differentiation
Pvalue	Term BP - Cluster2
$2 \mathrm{e}-07$	cell adhesion
$4 \mathrm{e}-07$	cell morphogenesis involved in differentiation
$2 \mathrm{e}-06$	multicellular organismal development
$5 \mathrm{e}-06$	generation of neurons
$6 \mathrm{e}-06$	neuron development
$1 \mathrm{e}-05$	neuron projection guidance
$2 \mathrm{e}-05$	cell projection morphogenesis
$3 \mathrm{e}-05$	axonogenesis
$4 \mathrm{e}-05$	cellular component morphogenesis

modEncode for cluster1

modEncode for cluster2

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments
Decomposing the variation of gene expression
Differential gene expression - EdgeR
Space-specific genes - pairwise comparison of wing compartments

Isoform usage

Next steps

dorsal vs ventral - space-specific genes $=38$

Biotype	Cluster1	Cluster2
mRNA	11	25
ncRNA	0	2
GO terms GO terms (wing, dorsal, ventral, imaginal disc, development)	6	11
9		

Pvalue	Term BP - Cluster1
$4 \mathrm{e}-06$	midgut development
$7 \mathrm{e}-05$	maintenance of epithelial integrity, open tracheal system
$1 \mathrm{e}-04$	embryo development
$1 \mathrm{e}-04$	cell motility
$1 \mathrm{e}-04$	digestive system development
$3 \mathrm{e}-04$	imaginal disc development
$4 \mathrm{e}-04$	post-embryonic development
$7 \mathrm{e}-04$	tissue homeostasis
$7 \mathrm{e}-04$	eye-antennal disc morphogenesis
Pvalue	Term BP - Cluster2
$3 \mathrm{e}-06$	myoblast migration
$3 \mathrm{e}-06$	fibroblast growth factor receptor signaling pathway
$3 \mathrm{e}-06$	response to fibroblast growth factor
$6 \mathrm{e}-05$	regulation of crystal cell differentiation
$7 \mathrm{e}-05$	cellular response to growth factor stimulus
$1 \mathrm{e}-04$	larval visceral muscle development
$2 \mathrm{e}-04$	glial cell proliferation
$3 \mathrm{e}-04$	larval somatic muscle development
$5 \mathrm{e}-04$	enzyme linked receptor protein signaling pathway

modEncode for cluster1

modEncode for cluster2

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Isoform usage

Next steps

Number of isoforms expressed vs annotated

L3

white pupa

late pupa

Expression of the major isoform

Shannon entropy of isoform expression

late pupa

$$
H=-\sum_{i=1}^{n} p\left(x_{i}\right) \log p\left(x_{i}\right)
$$

higher entropy $->$ isoforms of a given gene are more uniformly expressed

vlsvt

- vls.vt (i.e. gene expression contribution estimate)
- var.bwGp (i.e. proportion of variance explained by group classification)
Here variance means variance in transcript expression.
- var.bwGp.ge(i.e. contribution of gene expression in this variance that is explained by the groups.

vlsvt - selected

UCSC Genome Browser on D. melanogaster Aug. 2014 (BDGP Release 6 + ISO1 MT/dm6) Assembly move $\lll \lll<\ggg \ggg 200 \mathrm{~min}$ 1.5x 3x 10x base zoom out 1.5 x 3x 10x 100x chr3R:5,234,558-5,260,339 25,782 bp. enter position, gene symbol or search terms
go hg38 replaces hg19 as default human ass

UCSC Genome Browser on D. melanogaster Aug. 2014 (BDGP Release 6 + ISO1 MT/dm6) Assembly
 chr3R:5,234.558-5,260,339 25,782 bp. enter position, gene symbol or search terms
go hg38 replaces hg19 as default human ass

Outline

Introduction

Overview of RNA-seq samples

Wing and eye

Wing compartments

Isoform usage

Next steps

Just sequenced RNA-seq samples

Analysis

- Further characterize AP DV boundaries
- Differences in the relative abbundance of isoforms (Jean Monlong - multiGroupSplicingComp)
- AS events - IPSA, AStalavista...
- Suggestions?

[^0]: Sets

 - Others

 Top age genes
 Top cell genes
 Average
 contribution:
 Cell 32\%
 Age 24\%
 Cell*Age 16\%
 Residuals 28\%

