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● Basic concepts
● Reference gene annotation
● Next generation sequencing
● RNA-seq experimental protocols
● Short-read RNA-seq data processing

○ mapping
○ visualisation of gene expression signal
○ gene expression quantification

● RNA-seq data analysis
○ sample clustering based on gene expression
○ differential gene expression
○ gene ontology (GO) term enrichment
○ differential splicing analysis

Outline
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● ChIP-seq data processing
○ mapping
○ peak calling
○ visualisation of signal

● ChIP-seq data analysis
○ genomic locations
○ differential peaks per tissue
○ BED files in UCSC browser

● Integrative data analysis
○ promoter regions of differentially expressed genes
○ ATAC-seq signal in the UCSC genome browser
○ promoter regions of differentially spliced genes
○ omics portals

Outline
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RNA-seq data analysis
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Analysis pipeline

Differential gene 
expression

Visualization 
(heatmap, volcano plots)

Gene Ontology term 
enrichment

Samples 
clustering

Data 
normalization



Cecilia Coimbra Klein

A practical example: Gene 
expression matrix

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3
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● which samples are more 
alike and which are 
more different?

● which genes are more 
alike and which are 
more different?

● clustering: grouping 
genes and/or samples 
such that similar ones 
are closer to each other
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1

A_2

B_1

B_2
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

Euclidean distance:
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.94 5.27

A_2 0.72 0.0

B_1 5.94 0.0

B_2 5.27 0.0
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Distance matrix calculation

A_1 A_2 B_1 B_2

G1 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4 3.5 3.0 4.0 4.2

G5 4.0 3.9 5.0 5.3

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.9 5.27

A_2 0.72 0.0 6.28 5.69

B_1 5.94 6.28 0.0 1.07

B_2 5.27 5.69 1.07 0.0
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Euclidean distance is not the only way to define distance: manhattan 
distance, Lipschitz distance, correlation distance, etc.
They all measure distance from a different perspective.

5 x 4
4 x 4



Hierarchical clustering

A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.9 5.27

A_2 0.72 0.0 6.28 5.69

B_1 5.94 6.28 0.0 1.07

B_2 5.27 5.69 1.07 0.0
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hierarchical clustering

● A_1
● A_2

● B_1
● B_2

Start by finding the smallest non-diagonal element in the distance matrix. Merge 
these two samples together.



Hierarchical clustering
A_1 A_2 B_1 B_2

A_1 0.0 0.72 5.9 5.27

A_2 0.72 0.0 6.28 5.69

B_1 5.94 6.28 0.0 1.07

B_2 5.27 5.69 1.07 0.0

● A_1
● A_2

● B_1
● B_2
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A_12 B_1 B_2

A_12 0.0

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Merge A_1 and A_2 into a new cluster “A_12”.

In complete linkage, the distance of this new 
cluster to other samples is filled by taking the 
max of the element of this cluster with respect to 
each sample. 



Hierarchical clustering
A_1 A_2 B_1 B_2
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A_12 B_1 B_2

A_12 0.0 6.28

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Merge A_1 and A_2 into a new cluster “A_12”.

In complete linkage, the distance of this new 
cluster to other samples is filled by taking the 
max of the element of this cluster with respect to 
each sample. 
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A_12 B_1 B_2

A_12 0.0 6.28 5.69

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Merge A_1 and A_2 into a new cluster “A_12”.

In complete linkage, the distance of this new 
cluster to other samples is filled by taking the 
max of the element of this cluster with respect to 
each sample. 



Hierarchical clustering
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A_12 B_1 B_2

A_12 0.0 6.28 5.69

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0

Now the merging is done, we find the smallest 
distance again.

● A_1
● A_2

● B_1
● B_2



Hierarchical clustering
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A_12 B_12

A_12 0.0 6.28

B_12 0.72 0.0

We recompute the distance matrix by selecting
the maximum...

● A_1
● A_2

● B_1
● B_2

A_12 B_1 B_2

A_12 0.0 6.28 5.69

B_1 0.72 0.0 1.07

B_2 5.94 6.28 0.0
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Samples clustering
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Data normalization 

22

Raw read counts can not be compared directly: different 
library size, gene length, gene abundance, Normalization 
allows to:

● Compare different datasets

● Compare different genes 

● Remove unwanted variation
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Normalization methods

23

Normalization 
methods

Scaling factors

Unwanted 
variation removal

Variance 
stabilizing

...
Methods: quantile 
normalization, trimmed 
mean of M-values (TMM, 
used by edgeR), DESeq

Methods: quantile normalization, 
trimmed mean of M-values (TMM, 
used by edgeR), DESeq

Methods: PEER, RUV, SVA
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Differential gene expression (DGE)
Aim: identify genes that are more (less) expressed in one 
sample than in the other

Comparisons:
● pairwise with one factor (most common)
● pairwise with multiple factors
● among more than two samples
● time-series

Always better to have ≥ 2 replicates per sample!

24

Soneson, Charlotte, and Mauro Delorenzi. "A comparison of methods for differential 
expression analysis of RNA-seq data." BMC bioinformatics 14.1 (2013): 91.
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Differential gene expression (DGE)

25

Sex Sample g1 g2 g3 ...

Male A1

Male A2

Male A3

Male A4

Female B1

Female B2

Female B3

Female B4
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Software examples

● edgeR (R package) 
○ Robinson, McCarthy, Smyth, "EdgeR: a bioconductor package for for differential expression of digital gene expression data." 

Bioinformatics 26(1) (2010): 139-40.

● DESeq (R package) 
○ Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." Genome biol 11.10 (2010): R106.

● DESeq2 (R package)
○ Love, Michael I., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and dispersion for RNA-Seq data with 

DESeq2."Genome biology 15.12 (2014): 550.

● voom+limma (R package)
○ Law, Charity W., et al. "Voom: precision weights unlock linear model analysis tools for RNA-seq read counts." Genome Biol 15.2 

(2014): R29.

● Cuffdiff 2
○ Trapnell, Cole, et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." Nature biotechnology 31.1 

(2013): 46-53.

26
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Normalization

 Basics of DGE

! Is it required?

Fit a model to the 
data per gene

- Data (read counts) discrete and positive
- Which distribution do we select? 

        Negative binomial

Normal

We need to 
estimate the mean 
and variance of the 
fitted distribution
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Hypothesis 
testing

- The null hypothesis (H0): gene expression is 
the same in both conditions

- Calculate a p-value 
- Adjust for multiple testing (e.g. FDR)

per gene

 (𝛂)
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Visualization: MA and volcano plots
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Gene Ontology (GO)
● Allows to capture biological 

knowledge in a written and 
computable form.

● Defines concepts/classes used to 
describe gene function, and 
relationships between these 
concepts. 

● Controlled vocabulary
● 3 main categories:

➔ Biological Process (BP)
➔ Molecular Function (MF)
➔ Cellular Component (CC)

● The same gene can have more than 
oneGO terms

The annotation is both manual and 
automatic

Gene Ontology Term Enrichment

30http://geneontology.org/

GO:0043076

Not good for lncRNAs!!
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Gene Ontology Term Enrichment

http://amigo.geneontology.org/amigo

http://amigo.geneontology.org/amigo
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Aim: Does my set of genes (identified as differentially 
expressed) have characteristic GO terms associated to it?

Enrichment: we should look whether GO terms associated to 
the genes in my set are overrepresented with respect to a 
background set of genes. 

There are many ways to statistically test this, and multiple 
software available online. One example is the R package 
GOstats, which can be run locally. It uses a hypergeometric 
test to assess the enrichment.

Other software: topGO, GOrilla, Metascape 
    

Gene Ontology Term Enrichment

32
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Visualization: REVIGO

33

http://revigo.irb.hr/

http://revigo.irb.hr/
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Alternative splicing
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RNA transcription and processing

Primary RNA transcripts 
are extensively processed:
capping, splicing, 
polyadenylation, editing

This process is highly regulated 
and results in a gene producing 
many distinct transcript isoforms: 
one gene, many transcripts

35

The transcriptome is distinct 
from and more complex than 
the genome

The transcriptome cannot be 
predicted from the genome 
sequence alone: it must be 
measured
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Complexity arising from differential processing

These processing events can result in different protein products, 
differentially (post-) transcriptionally regulated mRNAs or 
non-protein coding isoforms.

36

2) exon skipping

3) intron retention

Andreassi, C. et al. (2018). doi: 10.3389/fnmol.2018.00304
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Complexity arising from differential processing

37

Lee & Rio (2015). doi:10.1146/annurev-biochem-060614-034316

● pre-mRNA splicing scales with organismal complexity.

● Alternative pre-mRNA splicing occurs in ~88% of human genes, 
compared with ∼63% of mouse genes.

● More recent deep RNA-seq data, 95% to 100% of human genes may 
encode two or more (2+) isoforms

● One function of alternative splicing is to significantly expand the form and 
function of the human proteome
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Modes of AS

38

Exons are represented as blue and 
yellow blocks, introns as lines in 
between.

Alternative promoters and 
polyadenylation sites

Alternative promoters are primarily an 
issue of transcriptional control. Control of 
polyadenylation appears mechanistically 
similar to control of splicing.Both of these 
mechanisms are found in combination 
with alternative splicing and provide 
additional variety in mRNAs derived from 
a gene

Black (2003) doi: 10.1146/annurev.biochem.72.121801.161720
https://en.wikipedia.org/wiki/Alternative_splicing
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General splicing mechanism

39

Lee & Rio (2015). doi:10.1146/annurev-biochem-060614-034316



Junctions
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Splice sites in the human genome:
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Comparative genomics of the AS landscape in 12 metazoa

41
Sammeth, Foissac , Guigó (2008) PLoS Comput Biol 4(8): e1000147
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 AS landscape in human reference annotations

Sammeth, Foissac , Guigó (2008) PLoS Comput Biol 4(8): e1000147
42
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SUPPA: generate events based on gene annotation

43

https://bitbucket.org/regulatorygenomicsupf/suppa
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Alternative Splicing (AS)

44

a b

c

PSI = percent-spliced-in = the number of transcripts in which the given exon is 
included as a fraction of the number of transcripts in which it is included or excluded
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More than one way to define PSI

45

PSI = Percent-Spliced-In

Transcript-centric

Exon-centric
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SUPPA: Quantify event inclusion levels (PSIs)

46

https://bitbucket.org/regulatorygenomicsupf/suppa
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SUPPA: compare conditions

47

https://bitbucket.org/regulatorygenomicsupf/suppa

● SUPPA calculates the magnitude of splicing 
change (ΔPSI) and their significance across 
multiple biological conditions, using two or 
more replicates per condition. 

● Statistical significance is calculated by 
comparing the observed ΔPSI between 
conditions with the distribution of the ΔPSI 
between replicates as a function of the gene 
expression (measured as the expression of 
the transcripts defining the events).
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Setup environment 1
RNA-seq data analysis 4

48

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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Hands-on
● Forebrain, heart and liver of 12.5 days mouse embryos

● 2 bio replicates
● RNA-seq, ChIP-seq and ATAC-seq

● References:
● mouse genome  – mm10 assembly
● gene annotation – gencode vM4

● Processing:
● References: a small sample of the genome and annotation (21 

chromosomes, 1Mb long) 
● Data: one sample only (100,000 alignment-based pre-filtered reads)

● Analysis:
● all samples

49

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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https://github.com/abreschi/Rscripts
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Rscript rpkm_fraction.R --help

Usage: rpkm_fraction.R [options] file

Options:
    -i INPUT_MATRIX, --input_matrix=INPUT_MATRIX
            the matrix you want to analyze [default=stdin]
    -m METADATA, --metadata=METADATA
            tsv file with metadata on matrix experiment
    -o OUTPUT, --output=OUTPUT
            additional tags for otuput
    -c COLOR_BY, --color_by=COLOR_BY
            choose the color you want to color by. Leave empty for no color
    -y LINETYPE_BY, --linetype_by=LINETYPE_BY
            choose the factor you want the linetype by. Leave empty for no linetype
    -f FILE_SEL, --file_sel=FILE_SEL
            list of elements of which computing the proportion at each point
    --out_file=OUT_FILE
            store the coordinates in a file [default=NULL]
    -P PALETTE, --palette=PALETTE
            file with the colors
    -t TAGS, --tags=TAGS
            choose the factor by which grouping the lines [default=labExpId]
    -h, --help
            Show this help message and exit

--help 
will provide input/output parameters
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Additional slides
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Understanding clustering: a geometrical insight

53

x y

10.82 9.89

3.26 5.59

5.18 5.43

10.58 11.10

8.01 8.87

10.39 9.75

4.33 3.61

10.74 9.94

... ...
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Understanding clustering: a geometrical insight

54

b

a

c

(6,2)
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Understanding clustering: a geometrical insight

55

Going one dimension higher ...

x y z

6.2 2.8 4.8

5.8 2.7 5.1

5.1 3.8 1.6

6.7 2.5 5.8

6.5 3.0 5.2

5.4 3.7 1.5

5.1 3.3 1.7

6.7 3.0 5.2

... ... ...
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Understanding clustering: a geometrical insight

56

Going one dimension higher ...

d

x2

x1

y2
y1

z2

z1

e



Cecilia Coimbra Klein

Understanding clustering: a geometrical insight

57

If we go up to 4, 5, …, n-dimensional space, how can we know 
which points (observations) are close to each other? 
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Clustering overview

58

Input data Distance 
matrix

Clustering 
algorithm Cluster labels

n samples

p genes

p genes

p genes

n samples

n samples

K-means

Hierarchical 
clustering

DBSCAN

...

C1
C3
C3
C2
C3
…
C1

C2
C2
...

p genes

1

n samples

1

dista
nce

 

between genes

distance between 

samples
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Clustering methods

59

Hierarchical clustering: Seeks to build a hierarchy of clusters. To 
generate the "class label" for each sample, we cut the tree at a certain 
height.
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Clustering methods
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Hierarchical clustering: Seeks to build a hierarchy of clusters. To 
generate the "class label" for each sample, we cut the tree at a certain 
height.

Animation from: https://dashee87.github.io
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Clustering methods

61

k-means: Partitions n observations into k clusters. Each observation 
will be assigned to the cluster with the nearest mean.
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Clustering methods
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k-means: Partitions n observations into k clusters. Each observation 
will be assigned to the cluster with the nearest mean.

Animation adapted from: http://shabal.in/visuals/kmeans/1.html
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Samples clustering

63
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Normalization methods

64

Normalization 
methods

Scaling factors

Unwanted 
variation removal

Variance 
stabilizing

...
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Normalization methods
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Methods: quantile normalization, trimmed mean of M-values (TMM, used by 
edgeR), DESeq

A) Scaling factors

Adapted from: Wu et al (2014). Deciphering global signal features of high-throughput array data from cancers. Molecular Biosystems.
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Normalization methods

66

B) Variance stabilizing

 
Methods: vst (DESeq2), rlog 
(DESeq2), voom 

Data from 200 TCGA lung cancer samples

Increasing expression

! Mainly for visualization 
and ML purposes
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Normalization methods

67

Methods: PEER, RUV, SVA

C) Unwanted variation removal

Adapted from: Nat Genet. 2017 
December; 49(12): 1789–1795. 
doi:10.1038/ng.3975
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30 30

40 Quantification

100 100 60 60 60100

TPM = 480

TPM = 150

PSI = (30+30)/(30+30+80)=0.43 PSI-tx = 480/(480+150)=0.76

PSI = Percent-Spliced-In

More than one way to define PSI

605040
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Look at the gene expression distribution
To  spot possible biases, detect outliers and assess 

the similarity among samples

● Look at the RPKM/FPKM/TPM distribution for 
individual samples (min, max, mean, median)

● Compare distributions among samples

● Look at the samples clustering

69


