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● Basic concepts
● Reference gene annotation
● Next generation sequencing
● RNA-seq experimental protocols
● Short-read RNA-seq data processing

○ mapping
○ visualisation of gene expression signal
○ gene expression quantification

● RNA-seq data analysis
○ sample clustering based on gene expression
○ differential gene expression
○ gene ontology (GO) term enrichment
○ differential splicing analysis

Outline
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● ChIP-seq data processing
○ mapping
○ peak calling
○ visualisation of signal

● ChIP-seq data analysis
○ genomic locations
○ differential peaks per tissue
○ BED files in UCSC browser

● Integrative data analysis
○ promoter regions of differentially expressed genes
○ ATAC-seq signal in the UCSC genome browser
○ promoter regions of differentially spliced genes
○ omics portals

Outline
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● Basic concepts
● Reference gene annotation
● Next generation sequencing
● RNA-seq experimental protocols
● Short-read RNA-seq data processing
● RNA-seq data analysis
● ChIP-seq data processing
● ChIP-seq data analysis
● Integrative data analysis

Outline
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Hands-on
● Forebrain, heart and liver of 12.5 days mouse embryos

● 2 bio replicates
● RNA-seq, ChIP-seq and ATAC-seq

● References:
● mouse genome  – mm10 assembly
● gene annotation – gencode vM4

● Processing:
● References: a small sample of the genome and annotation (21 

chromosomes, 1Mb long) 
● Data: one sample only (100,000 alignment-based pre-filtered reads)

● Analysis:
● all samples
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https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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Setup environment 1

7

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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Molecular biology dogma

● Only ~1% of the human genome produces proteins, although much more is 
transcribed (~60%).

● The genome is identical in all cell types, however not all cell types have the 
same function. That’s why the transcriptome (and the epigenome) becomes 
also relevant.

epigenetic 
modifications

9
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RNA transcription and processing

Primary RNA transcripts 
are extensively processed:
capping, splicing, 
polyadenylation, editing

This process is highly regulated 
and results in a gene producing 
many distinct transcript isoforms: 
one gene, many transcripts

10

The transcriptome is distinct 
from and more complex than 
the genome

The transcriptome cannot be 
predicted from the genome 
sequence alone: it must be 
measured
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Genome and transcriptome

Some definitions:

● Genome: the full DNA complement of a species’ cell
● Gene: the physical region of a chromosome producing some kind or RNA 

transcript
● Isoforms: distinct RNAs arising from the gene, through differential exon 

inclusion, transcription start or termination sites.
● Transcript: The RNA molecule corresponding to one of the isoforms
● Transcriptome: the full RNA complement of a species' cell

11

Gene

Isoforms

1

2

3

4
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Complexity arising from differential processing

These processing events can result in different protein products, 
differentially (post-) transcriptionally regulated mRNAs or 
non-protein coding isoforms.

12

2) exon skipping

3) intron retention

Andreassi, C. et al. (2018). doi: 10.3389/fnmol.2018.00304
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Complexity arising from differential processing

13

Lee & Rio (2015). doi:10.1146/annurev-biochem-060614-034316
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RNA composition in the cell

14

● Only part of the human transcriptome encode proteins
● Many different type of regulatory RNAs, small <200nt and long >200nt
● lncRNAs: transcribed by RNA Polymerase II, actively processed
● Functionally important, have many signatures of mRNAs 
● XIST, HOTAIR, TelRNAs 

GENOME

TRANSCRIPTOME
34.3%
Protein-coding 
genes

27.3%
lncRNA genes

25.4% 
pseudogenes

13.1%
Small ncRNA 
genes

From gencode v.26 annotation

Non-coding 
RNA

PROTEOME



Reference gene annotation
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Reference gene annotation

● For a given species and associated genome assembly, the 
reference gene annotation is the collection of all genes known for 
this species

● A gene annotation (like a genome assembly) can be at various 
completion stages depending on the species. High-quality 
annotations: human, mouse, D. melanogaster, C. elegans or 
yeast. 

● It is important to choose well the reference gene annotation 
beforehand since it will represent the known transcriptome to 
which the RNA-seq transcriptome will be compared.

16

! Always check the annotation version you’re going to use.
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● 4 broad gene categories: protein-coding genes (~20,000), long non-coding 
genes, pseudogenes, small non-coding genes

● Several features: gene, transcript, exon, CDS, UTR

● 3 confidence levels: automatically annotated < manually annotated < validated

● File formats: GTF/GFF3

17

 Gencode annotation

https://www.gencodegenes.org/

https://www.gencodegenes.org/
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Gencode lncRNA gene annotation
● Gencode has always annotated lncRNA genes and was calling them 

“processed_transcript”

● Since they are more and more numerous and interesting to people, Gencode 
now better classifies them, partly using their location to PCGs:

3prime_overlapping_ncrna Transcripts where ditag and/or published experimental data strongly 
supports the existence of long non-coding transcripts transcribed from the 
3'UTR.

sense_intronic Long non-coding transcript in introns of a coding gene that does not 
overlap any exons.

sense_overlapping Long non-coding transcript that contains a coding gene in its intron on the 
same strand.

antisense Transcript believed to be an antisense product used in the regulation of the 
gene to which it belongs.

non_coding Transcript which is known from the literature to not be protein coding.

processed_transcript Doesn't contain an ORF.

lincRNA Long, intervening noncoding (linc)RNAs, that can be found in evolutionarily 
conserved, intergenic regions.

18
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GTF format

features

19

a text-based format for storing features information
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Setup environment 1

20

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/


Next generation sequencing
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 NGS: Illumina sequencing

● Illumina Sequencing (short reads ~ max. 150bp)

● single end
1) Library preparation: DNA fragmentation, adapter ligation, PCR 

amplification
2) Solid-phase bridge amplification
3) Flowing of fluorescent reversible terminator dNTPs; incorporation of a 

single base per cycle. Sequencing by synthesis.
4) Read identity of each base of a cluster from sequential images

● paired end
5) After completion of the first read, the templates can be regenerated in 
situ to enable a second read from the opposite end.

22

https://www.youtube.com/watch?annotation_id=annotation_228575861&feature=iv&src_vid=womKfikWlxM&v=fCd6B5HRaZ8
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 NGS: Third generation sequencing

● Although Illumina is by far the most popular, there are many other 
sequencing technologies, such as PacBio, Ion Torrent or Oxford 
NanoPore that:

- allow sequencing genomic material without neither fragmentation 
nor clonal amplification.

- enable getting longer reads (tens of Kb!), but at the price of a 
much higher error rate than Illumina.

- have been mostly used for genome sequencing, since those reads 
can span complicated repeat-rich regions which are trickier to 
assemble using short reads.

23

https://www.pacb.com/
https://www.thermofisher.com/es/es/home/brands/ion-torrent.html
https://nanoporetech.com/
https://nanoporetech.com/
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 Which *-Seq do I need?

● Learn more about your favourite *-Seq here!

● Note that we are always talking about re-sequencing, which is something different 
from de novo sequencing (what is done for a new genome assembly) 

Genomics analyses 
WGS, WES

Transcriptomics 
analyses 
RNA-Seq

Epigenomics 
analyses

Bisulfite-Seq, Chip-Seq

SNPs, small indels, 
copy number 

variations, structural 
rearrangements, etc.

Gene and transcript 
expression (coding 

and non-coding),  
alternative splicing, etc.

DNA methylation, 
histone modifications, 
TF binding sites, etc.

DNA RNA DNA/epigenetics

24

http://education.knoweng.org/sequenceng/index.html


RNA sequencing
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Why is it useful?

● Measure gene and transcript expression at different 
conditions, developmental stages, etc.

● Discover / annotate novel elements: genes (coding and 
non-coding), transcripts, exons, (chimeric) junctions, 
circular RNAs, etc.

● Alternative splicing, transcription start and termination 
(polyadenylation) sites.
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Experimental design 

27

Replicates Controls

Biological

Organism 

Cell type

Treatment

Technical

Sequencing 
technology

Hard/Software

Expertise

Economical

Budget

Ethical 
restrictions

Conditions
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RNA-seq experiment

28

Library preparation

Sequencing

Analysis
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Experimental variables of RNA-seq

RNA 
purification

Total RNA

PolyA+

PolyA-

Ribo-

Size selection

Long (>200nt)

Short (<200nt)

Preparation

Single end

Paired end

Cellular 
localization

Whole cell

Chromatin

Exosome

Nucleus

Cytoplasm

Special protocols

Single-cell RNA-seq

Nascent RNA-seq (GRO-seq/NUN-seq)

miRNA-seq

Strandness

Stranded

Unstranded

29
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Experimental variables of RNA-seq

RNA 
purification

Total RNA

PolyA+

PolyA-

Ribo-

Size selection

Long (>200nt)

Short (<200nt)

Cellular 
localization

Whole cell

Chromatin

Exosome

Nucleus

Cytoplasm

Special protocols

Single-cell RNA-seq

Nascent RNA-seq (GRO-seq/NUN-seq)

miRNA-seq

30

Preparation

Single end

Paired end

Strandness

Stranded

Unstranded
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Experimental variables of RNA-seq

RNA 
purification

Total RNA

PolyA+

PolyA-

Ribo-

Size selection

Long (>200nt)

Short (<200nt)

Cellular 
localization

Whole cell

Chromatin

Exosome

Nucleus

Cytoplasm

Special protocols

Single-cell RNA-seq

Nascent RNA-seq (GRO-seq/NUN-seq)

miRNA-seq

OUR 
HANDS-
ON

31

Preparation

Single end

Paired end

Strandness

Stranded

Unstranded



Cecilia Coimbra Klein 32

Single-end (SE) reads

Paired-end (PE) reads

reference

unknown
sequence

reference

sequenced
end 

sequenced
end 

RNA purification    Preparation
protocol

● PolyA+ gets rid of the 
ribosomal RNAs and purify 
mature polyadenylated 
transcripts. 

● PolyA-  enrichs for 
non-mature RNAs

● Ribo- gets rid of the 
ribosomal RNAs but 
capture both mature and 
non-mature RNAs
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stranded

unstranded

 Library                  Strandness
 preparation
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How much to sequence? 

Depends on multiple 
factors:
● goal of experiment
● protocol
● species
● etc.

e.g. in humans:

>30M reads for simple 
analyses
>100M reads for novel 
elements discovery

34

Toung, J. (2011) doi: 
10.1101/gr.116335.110
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Setup environment 1

35

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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Data formats
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Typical pipeline

Raw data, reads

Quality check

Read mapping

Data analysis

Some data formats

*.fastq, *.fa,
*.sff, *.sra

*.fastq
*.tsv, *.html..

*.sam, *.bam
*.bed, *.wig, *.bw
*.bedgraph
 *.gtf,  *.fa,..

*.vcf
*.tsv
*.ace, *.agp
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Typical pipeline

Raw data, reads

Quality check

Read mapping

Data analysis

Some data formats

*.fastq, *.fa,
*.sff, *.sra

*.fastq
*.tsv, *.html..

*.sam, *.bam
*.bed, *.wig, *.bw
*.bedgraph
 *.gtf,  *.fa,..

*.vcf
*.tsv
*.ace, *.agp



FASTQ format
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FASTQ Format

a text-based format for storing biological sequences and 
their corresponding quality scores

1
2
3
4

1st character Sequence id

Optionally: The sequence id can be followed by a description

40
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FASTQ Format

a text-based format for storing biological sequences and 
their corresponding quality scores

1
2
3
4

Raw sequence

41
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FASTQ Format

a text-based format for storing biological sequences and 
their corresponding quality scores

1
2
3
4

1st character

Optionally: “+” can can be followed by the sequence id and any description

42
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FASTQ Format

a text-based format for storing biological sequences and 
their corresponding quality scores

1
2
3
4

Quality code associated to each base of the sequence

43
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FASTQ Format - summary
Four lines per sequence are used in a FASTQ file:

1. begins with a '@' character and is followed by a sequence 
identifier and an optional description (like a FASTA title line)

2. the raw sequence

3. begins with a '+' character and is optionally followed by the 
same sequence identifier (and any description)

4. encodes the quality values for the sequence contained in line 
2 (must contain the same number of symbols as the 
sequence)

   

44

http://en.wikipedia.org/wiki/FASTA_format
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FASTQ Format - quality offset
A quality value Q is an integer mapping of p (i.e., the probability 

that the corresponding base call is incorrect). The most used 

formula is the Phred quality score:

offset max Phred score 
range max ASCII range real-world Phred 

score range
real-world ASCII 

range

33 0 - 93 33 - 126 0 - 40 33 - 73

64 0 - 62 64 - 126 0 - 40 64 - 104

45
https://en.wikipedia.org/wiki/FASTQ_format#Encoding

http://en.wikipedia.org/wiki/Phred_quality_score
https://en.wikipedia.org/wiki/FASTQ_format#Encoding
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                                      Alignment

SAM format
Sequence Alignment/Map

Headers

46
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SAM format
Sequence Alignment/Map

47

Flag:
https://broadinstitute.github.io/picard/explain-flags.html

More specification on SAM format:
https://samtools.github.io/hts-specs/SAMv1.pdf

CIGAR:
- N → intron
- M → match
- I → insertion
- D → deletion
- S → soft-clip

https://broadinstitute.github.io/picard/explain-flags.html
https://samtools.github.io/hts-specs/SAMv1.pdf
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BAM format

● specific block compression
○ BGZF

● support random access through the index
fast retrieval of alignments overlapping a specified 
region

compressed binary representation of the SAM format

BAM file must be sorted by genomic position 
(chromosome name and leftmost coordinate)

in order to be indexed!
!

48
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CRAM format

● different compression formats
○ gzip, bzip2, CRAM records

● CRAM records use different encoding strategies, e.g. 
bases are reference compressed by encoding base 
differences rather than storing the bases themselves

● random access support through the format itself (slices)

improved compressed binary representation of SAM

49

! CRAM indexing is external to the file format itself 
and may change independently of the file format 

specification in the future
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BED format

block length   block position   required fields   region

provides a flexible and compact way to represent genomic regions (with breaks)
● 3 required fields + additional 9 fields
● more compact than GFF  tradeoff between size and provided information

50

10) blockCount - The number of blocks (exons) in the BED line.

11) blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.

12) blockStarts - A comma-separated list of block starts. All of the blockStart positions should be calculated relative to chromStart. The 
number of items in this list should correspond to blockCount.

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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bedGraph and wig formats
bedGraph
● allows the display of continuous-valued data

● useful for probability scores and transcriptome data (CHIp-seq, RNA-seq)

● is a text file

51

track type=bedGraph name="BedGraph Format" description="BedGraph format" visibility=full color=200,100,0 altColor=0,100,200 
priority=20
chr19 49302000 49302300 -1.0
chr19 49302300 49302600 -0.75

wig
● allows the display of continuous-valued data

● more compressed than bedGraph

● is a text file

fixedStep chrom=chr3 start=400601 step=100
11
22
33
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bigBed, bigWig
Useful formats to display data on the UCSC genome browser

● BED, bedGraph, wig - are tab delimited text files

● bigBed, bigWig - are binary version of this files

● for each type of file there is a specific procedure to make a binary form

○ easily transferable

○ not so big

○ allows indexed access

52
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Data formats 2

53

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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Post-sequencing: usual pipeline

Raw data, reads

Quality check

Processing

Analysis

Some data formats

*.fastq, *.fa,
*.sff, *.sra

*.fastq
*.tsv, *.html..

 *.sam, *.bam
 *.bed, *.wig, *.bw
 *.bedgraph
 *.gtf,  *.fa,..

*.vcf
*.tsv
*.ace, *.agp



Quality check
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Quality check

56

● RNA-seq library preparation/sequencing QC: 
○ RNA Integrity Number (RIN), library size distribution

● Pre-mapping QC, raw reads:
○ Sequence quality
○ GC content
○ K-mers overrepresentation
○ Possible contaminants

● Post-mapping QC: 
○ Mapping statistics - % reads mapped, % of 

multimappings, duplicated reads, detected elements, 
overall gene/transcript coverage, strand specificity...

○ rRNA content
○ Expression profile efficiency
○ Replicates correlation 
○ Sample clustering
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Quality metrics

57

https://www.encodeproject.org/rna-seq/long-rnas/

ENCODE 3 standards for long RNA-seq data:

● Two or more replicates
● Read length >50bp
● >30M uniquely mapped reads 
● Spearman correlation >0.8 between replicates
● Metadata control
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FastQC

58

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Reference annotation 3.1
 Fastq files and read QC 3.2

59

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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Post-sequencing: usual pipeline

Raw data, reads

Quality check

Processing

Analysis

Some data formats

*.fastq, *.fa,
*.sff, *.sra

*.fastq
*.tsv, *.html..

 *.sam, *.bam
 *.bed, *.wig, *.bw
 *.bedgraph
 *.gtf,  *.fa,..

*.vcf
*.tsv
*.ace, *.agp
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Mapping de novo 
assembly

reference

Gene expression 
quantification

  2 + 1 + 3 = 6 reads gene X

Processing

pseudo-alignment



62

Mapping strategy
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Mapping

63

Mapping

reference

Gene expression 
quantification

  2 + 1 + 3 = 6 reads gene X

Find a correspondence between the 
query sequences (RNA-seq reads) 
and our prior knowledge (reference 
genome sequence, reference gene 
annotation).
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Alignment
A common technique for mapping is alignment:

Not always easy:
● Reads are short with respect to the genome (~100 bp)
● Human genome is ∼3G bp long and rather repetitive
● Reference genome is different from sample genome 

(SNPs, indels, structural variants)
● Reads are prone to errors (if lucky 1/1000 base calls are 

wrong)

CATGGAACTTATCTCACAGCCTTT
CATGGAACTT–TCGCACAGCCTTT

Reference:
Read:

64
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Alignment - basic concepts

● online vs indexed
● global vs local
● sequence similarity

○ mismatches as base substitutions (A→T)
○ insertions/deletions or gaps
○ block transpositions or rearrangements

● multimaps
● heuristic vs exhaustive

Given a metric distance (eg. mismatches) and a threshold (eg. 96% 
homology) the alignment is exhaustive if it contains all possible matches in 
the reference for that distance and threshold

65
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Indices

● indexing the reference (most common choice):
○ each read is mapped individually
○ references usually have big size but are fixed
○ read/sample size unknown and variable

● indexing the reads:
○ reference is scanned to perform the mapping
○ makes sense with small references (e.g. Yeast)

● indexing both the reference and the reads:
○ high memory consumption - keeps both indices

Pre-compute the reference text into an index providing fast 
sorted access to substrings of the reference

66
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sensitivity depends on seed length and overlap
poor choice of seed might lead to unmapped reads
not exhaustive

Mapping algorithms - 
seed-and-extend

i. extract seeds (usually exact)
ii. lookup each of them into the index
iii. “extend” the search to validate the alignments

67
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Paired-end alignment

● connectivity information
● insert size and read length 

are known in advance (from 
library preparation)

● insert size distribution can 
be used to solve 
ambiguities (or even 
enhance the mapping 
process)

Both ends of the fragments are 
sequenced→paired-end reads

Single-end (SE) reads

Paired-end (PE) reads

reference

unknown
sequence

reference

sequenced
end 

sequenced
end 

68
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● intron size
● overhang

○ number of bases from each side of the junction that 
should be covered by the read

● splice site consensus
○ donor/acceptor splice site consensus sequences

● junction “filtering”:
○ chromosome/strand
○ block order
○ min/max distance

RNA-seq mapping
Specific variables to consider when mapping RNA-seq data

69
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Mapping statistics

● total reads
● mapped reads (number and %)
● uniquely mapped reads (number and %)
● mappings (including multimaps)
● genomic regions (number and %)

70
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Mapping 3.3

71

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/


RNA-seq signal
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RNA-seq signal

● expected read depth at each position in the genome
● can be normalized (e.g. RPM, reads per million reads)

genome-euro.ucsc.edu

http://genome-euro.ucsc.edu
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UCSC: signal files

genome-euro.ucsc.edu

http://genome-euro.ucsc.edu
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RNA-seq signal files 3.4
UCSC genome browser 3.5

75

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/


Gene expression quantification

76



Cecilia Coimbra Klein

Gene expression quantification

77

Mapping

reference

Gene expression 
quantification

  2 + 1 + 3 = 6 reads gene X

To quantify the expression of a gene, 
a simple idea is to count the RNA-seq 
reads that fall within the exons of this 
gene:
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Gene expression quantification

● In experiment B with a high number of mapped reads, a gene will get more 
reads than in an experiment with a small number of mapped reads

78

  2 + 1 + 3 = 6 reads gene X
  5 + 2 + 5 + 3 = 15 reads gene Y

● In experiment A, long genes (in terms of exon length) will get more reads than 
small genes

  6 + 2 + 6 = 14 reads gene X
 9 + 4 + 10 + 5 = 28 reads gene Y
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Gene expression quantification

● Mortazavi et al. (2008) introduced RPKM = Read Per Kilobase of exon model 
per Million mapped reads, which normalizes the read count of a gene in an 
experiment by both:
○ the length of the gene
○ the number of mapped reads in the experiment

79

● FPKM = Fragments Per Kilobase of exon model per Million mapped reads

Paired-end RNA-Seq experiments produce two reads per fragment (not 
necessarily both reads will be mappable). To avoid double-count some fragments 
but not others, FPKM is calculated by counting fragments, not reads.
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Gene expression quantification
● RPKM is now widely used for assessing gene expression, however it 

assumes that the absolute amount of total RNA in each cell is similar across 
different cell types or experimental perturbations, which is not always the case 
(Loven, 2012)

● For example, Mortazavi et al. (2008) estimates that 3 RPKM corresponds to ~ 
1 transcript per cell in mouse liver, while Klish et al. (2011) say that 1 RPKM 
corresponds to between 0.3 and 1 transcript per cell...

80

Li, Ruotti, Stewart, Thomson, Dewey, “RNA-seq gene expression estimation with read mapping 
uncertainty”, Bioinformatics, 26(4), 2010, 493-500. 
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Individual transcript expression

● Gene expression is quite easy to compute, however estimating the 
expression of individual transcripts of each gene is a difficult problem:

             

Do the two circled reads come from the red or from the blue transcript?

● Read deconvolution or transcript isoform quantification

● There are 2 categories of transcript isoform quantifiers :

○ read-centric (Cufflinks, IsoEM, RSEM, Sailfish, eXpress, Kallisto)
○ exon-centric (Poisson model, linear regression approaches like rQuant, 

IsoLasso, SLIDE, flux capacitor)

81
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Transcript and gene 
expression quantification 3.6

82

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/
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● Basic concepts
● Reference gene annotation
● Next generation sequencing
● RNA-seq experimental protocols
● Short-read RNA-seq data processing

○ mapping
○ visualisation of gene expression signal
○ gene expression quantification

● RNA-seq data analysis
○ sample clustering based on gene expression
○ differential gene expression
○ gene ontology (GO) term enrichment
○ differential splicing analysis

Outline

84
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● ChIP-seq data processing
○ mapping
○ peak calling
○ visualisation of signal

● ChIP-seq data analysis
○ genomic locations
○ differential peaks per tissue
○ BED files in UCSC browser

● Integrative data analysis
○ promoter regions of differentially expressed genes
○ ATAC-seq signal in the UCSC genome browser
○ promoter regions of differentially spliced genes
○ omics portals

Outline
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Emilio Palumbo, CRG
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https://github.com/guigolab/grape-nf

Grape pipeline
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With RNA-seq you can do..
❏ Study of annotated gene and transcript expression

❏ Assemble novel transcripts with and without reference genome

❏ Novel genome annotation

❏ Splicing analysis

❏ Chimeric-transcript analysis

❏ Variation detection, including genome variation

❏ Allele-specific analysis

❏ Study of post-translational modification, i.e RNA editing

❏ QTL mapping 
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Examples of ncRNA functions

91Sun and Kraus 2015

Only ~2% of human 
lncRNAs are functionally 
characterized 



Library preparation

92

RNA purification

Fragmentation

Stranded protocol
Non-stranded 

protocol

● Reverse transcription 
(1st and 2nd strand)

● Adenylation of 3’ ends
● Adapter ligation
● PCR amplification

● Reverse transcription (1st only)
● Using dUTP instead of dTTP for 

the second strand cDNA 
synthesis 

● Adenylation of 3’ ends
● Adapter ligation
● Degradation of the second 

strand 
● PCR amplification



Library preparation, stranded
Note:
Elimination of the second strand may be different 
between protocols. Some protocols (used by 
ENCODE and Blueprint) digest the second strand by 
using a UDGase (enzyme that digests the Uracil 
strand). More recent protocols use a DNA 
polymerase that is not able to amplify the Uracil 
strand and, thus, only enriches the 1st strand
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Index structures
● Hash based

○  Simple Idea -> Store k-mers/seeds/samples using some hash function 
H(·)

○ Usually requires a lot of space (several times the reference size)

● SuffixArrays
○ Sort suffixes of the text, storing the sorted positions in an array

● FM-Index (BWT Based)
○ Same logic as SuffixArrays
○ Based on a compression scheme (BZIP)

■ Space efficient (sizes the same as the reference)
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STAR: Suffix arrays



The STAR software

● STAR: Spliced Transcripts Alignment to a Reference

● fast, de novo detection of canonical junctions and can 
discover non-canonical splice and chimeric transcripts; but 
truncate reads and produces some FP junctions

● has a potential for accurately align long (several 
kilobases) reads that are emerging from the 
third-generation sequencing technologies
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STAR workflow
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Alex Dobin,CSHL
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Seed search: basic idea
● “Consecutive maximal exact prefix search”

● MEM, Maximal Exact Match: Mummer, MAUVE
● BWA-MEM, Cushaw2, GEM

Alex Dobin, CSHL
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Mismatches and tails

Alex Dobin, CSHL

A-tail, or adapter, 
or poor quality tail

Trim



100

Seed stitching strategy

● Most DNA aligners use seed-extend paradigm

● STAR uses “seed stitching” strategy:
build the best local alignment out of all seeds

Alex Dobin, CSHL
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Seed stitching strategy
● first, seeds are clustered together based on proximity to a selected set of 

"anchor" seeds (seeds that map <50 times)
● all seeds that map within user-defined genomic windows are stitched 

together
● “Alignment windows”: genome regions around anchors

Size of the window ~ maximum intron size, ~1Mb for human

Alex Dobin, CSHL



102

Seed stitching strategy
● dynamic programming algorithm stitches each pair of seeds, allowing for 

any number of mismatches but only one insertion or deletion (gap)

● local alignment scoring scheme
● N seeds: 2N combinations - only works for shorter reads <200b
● longer reads: each seed is stitched to all the preceding seeds within a 

window
● highest score stitched combination -> the best alignment of the read

Alex Dobin, CSHL



Individual transcript expression
● There are two categories of transcript isoform quantifiers:

○ read-centric (Cufflinks, IsoEM, RSEM, Sailfish,eXpress, Kallisto): assign 
probability for each transcript fragment (paired-end read) to one transcript 
by maximizing the joint likelihood of read alignments based on the 
distribution of transcript fragment 

○ exon-centric (Poisson model, linear regression approaches like rQuant, 
IsoLasso, SLIDE, flux capacitor): considers the read abundance on an 
exonic segment as the cumulative abundance of all transcript isoforms. 
The transcript is represented as a combination of exons and aims at 
estimating individual transcript abundance from the observed read counts 
at each exon

● The RPKM of a gene can then be obtained by summing the RPKM of its 
constituent transcripts (assuming that reads were assigned to transcripts in a 
mutually exclusive way)
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Individual transcript expression
● An increasing number of programs (mostly read-centric 

such as RSEM, Sailfish, Kallisto) only use a mapping of 
the reads to the transcriptome (reference annotation) as 
input

● Although this can work well for well-annotated species, 
this will fail for species for which the annotation is not so 
good, since it will likely wrongly overestimate the 
quantifications
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The RSEM software
● RSEM: RNA-Seq by Expectation Maximization

● Parameters = transcript abundances
● Hidden variable = alignment

 
● Transcript-level alignment
● No need of a reference genome, requires a set of 

reference transcripts (eg. de novo transcriptome 
assembler, EST database... )

● Computes ML abundance estimates using the EM 
algorithm for its statistical method

● Good handling of multimaps leading to accurate 
quantifications
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The RSEM software 
workflow● Alignments of 

reads against 
reference 
transcript 
sequences 
(Bowtie)

● Calculate the 
relative 
abundances



STAR-RSEM pipeline
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Alex Dobin, CSHL
Reads are mapped to the genome with STAR which then internally converts 
genome mappings to transcriptome mappings (from genome to transcriptome 
coordinates). RSEM takes a transcriptome mapping as input. 


