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Figure S1. Flow diagram showing relationship between tags, peaks and analyses.  
The analysis starts by peak calling across the human and mouse libraries. Key points are highlighted by the thick 

boxes. Note, the majority of analyses are carried out using the robust peak set, and RLE normalised expression 

values. 
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Methods 

1. Ethics, sample collection, RNA extraction and quality control 
For information on specific samples, all of the following information is summarised in 

Supplementary Table 1. 

 

Human Ethics 

All human samples used in the project were either exempted material (available in public 

collections or commercially available), or provided under informed consent. All non-exempt 

material is covered under RIKEN Yokohama Ethics applications (H17-34 and H21-14).  

 

Mouse samples 

Mouse tissue samples were collected as per RIKEN Yokohama institutional guidelines. Mouse 

primary cells were collected as per our collaborators Institutional guidelines and shipped as 

either purified RNA or as guanidinium isothyocyanate lysates (Trizol, Isogen or Qiazol) which 

were then purified using the miRNeasy kit (QIAGEN). 

 

Primary cells  

The majority of human and mouse primary cell samples were purchased as purified RNA from 

Cell Applications, 3HBiomedical or Sciencell. Additional primary cells were also purchased 

from Cell systems, CET, Lonza, Promocell, Sciencell, Stem cell technologies and Xenotech. 

These were cultured as per the manufacturer’s instructions, and then RNA extracted using the 

miRNeasy kit (QIAGEN). The remaining primary cell samples were provided by the FANTOM5 

collaborator network to the OSC as either purified RNA or as guanidinium isothyocyanate 

lysates (Trizol, Isogen or Qiazol) which were then purified using the miRNeasy kit (QIAGEN). 

Human salivary acinar cells were isolated as described previously
1
. Human sebocytes were 

prepared as described previously
2
. Human epithelial cell rests of Malassez (ERM)-derived 

epithelial cells, gingival epithelial cells, gingival and periodontal fibroblasts were prepared as 

described previously
3
. Mouse tracheal epithelial cells were prepared as described previously

4
. 

Human dermal lymphatic endothelial cells were prepared as described previously
5
. Mouse 

regulatory T cells were prepared as following. C57BL/6JJcl mice and Balb/cAJcl mice were 

purchased from CLEA Japan (Tokyo, Japan). CD4+ T-cells were isolated from splenic and 

lymph node as previously described
6
. CD4+CD25+ T-cells (T-reg cells) and CD4+CD25-

CD44low T-cells (T-conv cells) were purified by sorting with a cell sorter (MoFlo, Beckman 

Coulter). For in vitro TCR stimulation of T-conv cells, plate coated anti-CD3 (1mg/ml) and anti-

CD28 (1mg/ml) for 6hrs or phorbol 12-myristate 13-acetate (20ng/ml) and ionomycin (1uM) for 

2hrs were used. Whole Blood, CD19+ B-cells and CD8+ T-cells were also prepared from 

anonymous donors over several (2 or 3) donations. RNA from whole blood was prepared using 

the Ribopure blood kit from Ambion. CD19+ B-cells and CD8+ T-cells were isolated using the 

pluriSelect bead system (huCD4/CD8 cascade and huCD19 single; pluriSelect Germany) and 

RNA then extracted using the miRNeasy kit (QIAGEN). 

 

Human Post mortem tissue RNAs 

The majority of human post mortem tissues were purchased from Ambion, Biochain, and 

Clontech. Universal RNA mixtures were also purchased from the above and SABiosciences. 

Human postmortem brain RNA samples from the Dutch Brain bank were collected by P. Heutink 

and P. Rizzu (exempted public collection). Remaining post-mortem tissue samples collected 
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under ethics (H17-34) were provided by J. Kere, A. Bonetti, and A. Sajantila. The tissues derived 

from human cadavers were snap-frozen in liquid nitrogen. The frozen tissues were transferred 

into Lysing Matrix D tubes (MP Biomedicals) containing 800µl of chilled Trizol (Gibco) each. 

The tissues were disrupted using the FastPrep Homogenizer (Thermo Savant) according to the 

manufacturer’s instructions. After homogenization the tubes were centrifuged at 12,000g for 15 

minutes at +4oC. The supernatants were transferred to a sterile 1.5 ml eppendorf tubes and kept 

at -90
o
C until shipped in dry ice to RIKEN Yokohama for further analyses. 

 

Cell lines 

The cell lines used are all available from public repositories (RIKEN BRC 

(http://www.brc.riken.jp/lab/cell/english/), ATCC (http://www.atcc.org/), Coriell 

(http://ccr.coriell.org/), ECACC (http://www.hpacultures.org.uk/collections/ecacc.jsp), and Japan 

Health Sciences Foundation - Health Science Research Resources Bank 

(http://www.jhsf.or.jp/English/index_p.html)). COBL-a
7
 and HEK293-SLAM

8
 cells are available 

on request from C. Kai. TSt-4/DLL1 feeder cells and EBF KO HPCs are available from T. 

Ikawa
9
. J2E cells are available on request from K.P. Klinken

10
. Aliquots of HeLa-S3, HepG2, 

K562 and GM12878 RNAs used by the ENCODE consortium were provided by Carrie Davis 

and Thomas Gingeras. Briefly, frozen cell line stocks were rapidly thawed at 37oC, diluted in 

10ml 37oC PBS, pelleted, and RNA directly extracted using the miRNA easy Kit. 

 

Quality control 

Working with large numbers of samples from multiple collaborators and companies brings about 

3 potential issues of QC (RNA quality, library depth and sample identity). RNA Quality: 

Degraded RNA can affect the quality of CAGE libraries affecting both the promoter hit rate and 

the complexity of transcript species measured. To address this, RNA integrity measurements 

were made using an Agilent Bioanalyser for samples with more than 1ug of RNA available. 97% 

of the samples used in the study had RIN above 6.8. For low quantity libraries this step was 

skipped so not to waste RNA and library quality metrics used instead. Library depth: shallow 

libraries can lead to false negative calls on gene expression. For the purposes of the gene 

expression analyses used in this paper libraries needed to contain at least 500,000 successfully 

aligned reads (mapping quality is 20 or more, and sequence identity is 85% or more)  mapped 

tags. However for peak calling shallow libraries were also used (the logic being that cell specific 

peaks found in these shallow libraries could still be captured). In addition the fraction of mapped 

tags falling within the robust peak regions were used as an additional metric for library quality. 

Sample identity: finally sample hierarchical clustering and marker gene checks were used to 

confirm or refute the identity of samples. Samples where their identity was in doubt were 

excluded from the expression analysis and labeled as unconfirmed_sample (they were however 

used in the peak calling).  

Libraries with very poor quality RNA and low promoter hit rates are not listed in the 

supplementary however we note that one set of profiles from post-mortem donors were largely 

discarded due to poor RNA quality and low promoter hit rates. A few samples from the same 

donor were used for peak calling however they were excluded from the expression analysis. 

Supplementary table 1 provides these quality metrics for all samples used in the study. 

 

2. Single molecule CAGE 

We prepared CAGE libraries for single molecule sequencing as described previously
11,12

. The 
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standard preparation was done using 5 ug of total RNA by manual and automated protocols. For 

low quantity samples (1 ug or less), we used a low quantity manual protocol. All CAGE libraries 

for single molecule sequencing were measured by OliGreen fluorescence assay kit (Life 

Technologies), and then 3 ng aliquots were subjected to poly-dA tailing reaction with terminal 

transferase and dATP, followed by blocking with ddATP. Poly-dA tailed libraries were then 

applied on HeliScope sequencers following the manufacturer’s instructions (LB-016_01 and LB-

017_01). Sequencing on HeliScope Single Molecule Sequencer was done according to the 

manufacturer’s manual, LB-001_04. 

 

3. Data Processing of Heliscope CAGE data  

Sequenced Heliscope reads have a high sequencing error rate (~5%), vary in length and lack an 

estimation of base qualities. Combined these factors make the data processing challenging. As an 

initial step we removed reads corresponding to ribosomal RNA. We accomplish this by directly 

aligning each read against the whole human (mouse) ribosomal DNA complete repeating unit 

and discarding all reads with an edit distance smaller or equal to two. For this purpose we 

implemented Myers’ bit parallel dynamic programming algorithm
13
 in the program rRNAdust 

(author: T. Lassmann). For computational efficiency we further parallelized this algorithm using 

both SIMD instructions and threads. All remaining CAGE reads were mapped to the genome 

(hg19 and mm9) using Delve, a probabilistic mapper14. In brief, Delve uses a pair hidden 

Markov model to iteratively map reads to the genome and estimate position dependent error 

probabilities. After all error probabilities are estimated, individual reads are placed to a single 

position on the genome where the alignment has the highest probability to be true according to 

the pHMM model. Phred scaled mapping qualities
15
, reflecting the likelihood of the alignment at 

a given genome position, are also reported. Reads mapping with a quality of less than 20 (<99% 

chance of true) were discarded. Furthermore, we discarded all reads that map to the genome with 

a sequence identity of less than 85%. 

 

4. Peak analysis of the CAGE profiles 
4.1 Identification and selection of CAGE peaks  

To identify peaks in the CAGE profiles, we developed a new method called decomposition peak 

identification (DPI, Kawaji et al. in prep, source code available at 

https://github.com/hkawaji/dpi1/ ). The method consists of the following steps: (i) identify local 

regions producing signals continuously along the genome, (ii) estimate a limited number of 

CAGE profiles underlying the whole observed biological states by independent component 

analysis16, and (iii) determine peaks based on the estimated profiles. In the first step, we started 

from all the CAGE profiles (998 and 394 samples for human and mouse respectively) and 

selected the single nucleotides (CAGE tag starting sites; CTSS) supported by 2 or more CAGE 

read 5’-ends in a single profile. The selected CTSSs were grouped into tag clusters if they were 

neighboring within 20bp as in a previous study
17
 however, since the depth of sequencing and 

coverage of biological states was greatly extended from the previous study
17
, we found that such 

a simple approach tended to produce very long tag clusters which merged multiple transcription 

initiation events. To segregate the resulting regions into distinct or distant transcription initiation 

events, in the second step, we selected long (50bp or more) and abundantly observed (50 counts 

or more) tag clusters. We performed independent component analysis (ICA
16
) on each of the 

selected tag clusters, to estimate representative CTSS intensity patterns along the local genomic 

region underlying all the sample profiles. The number of components used in ICA, which is 
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bounded by up to five, is determined depending on each tag cluster by considering the number of 

principle components explaining 95% of variance in the CAGE signals at most and the number 

of resulting independent components consisting of more than 10% of the CAGE signals. We 

found modest but continuous CAGE signals in proximity to very active CTSSs, and we 

subtracted 10% of the highest CTSS signal in each of the tag clusters within individual CAGE 

profiles used for the estimation of representative CTSS patterns. In the third step, we identified 

areas where signal intensities were higher than median over each of the estimated profiles. We 

aggregated the identified regions on individual estimated profiles when overlapping. Lastly, we 

combined the aggregated regions with the tag clusters that were not selected in the second step. 

As a result of the three steps, we obtained ~3.5 and ~2 million peaks in human and mouse. 

 

A substantial fraction of the peaks identified above had very limited tag support and were located 

in exonic regions, while the majority of known transcript 5’ ends were well supported by peaks 

with many tags. To enrich for promoter associated signals, we examined thresholds in expression 

levels at individual single CTSSs, with the thesis that genuine TSS are likely to reproducibly use 

the same position, whereas random degradation should be spread more broadly along the 

transcript. We set this by examining the ratio of peaks that were near 5’ ends of known transcripts 

(within 500bp) versus peaks that were within internal exons (but not promoter). We settled on 

two thresholds the first a permissive threshold gave a ratio of promoter to exonic peaks of ~0.7 

and corresponded to the subset of peaks with a single CTSS in a single experiment supported by 

3 or more observations in at least one profile, and a robust threshold yielding a ratio of ~2.0 and 

corresponding to peaks with a single CTSS in a single experiment supported by 11 or more 

observations and 1 or more TPM. Although the thresholds are based on single nucleotide 

positions, the total number of observations (reads) in each CAGE peak is substantially more (see 

below). We provide the permissive set to the research community for TSS exploration; however 

for the majority of the manuscript we use the higher trust robust set for further analysis.  

 

We examined several properties of the CAGE peaks below, such as peak length, GC content, low 

complexity regions, and maximum read count. The distribution of peak length demonstrates that 

the majority of the permissive peaks are very small (shorter than three base pairs), while length 

distribution of the robust peaks has a longer tail up to 300 base pairs. This demonstrates that the 

DPI peaks represent subcomponents of the broad promoters rather than broad complex promoters 

themselves.  

 
Figure S2: Length distributions of the CAGE peaks 
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The GC content plots suggest that the GC contents are largely consistent between the robust 

peaks and the permissive ones, except for the ratio of peaks consisting with G or C only. The 

difference likely comes from the nature of individual peak sets, where true TSSs are further 

enriched in the robust set as shown below (4.2).  

 
Figure S3: Ratio of G or C nucleotides within the CAGE peaks 

 

 

 

 

 

 

 

 

 

 

One could assume that the permissive set may consist of less reliable alignments due to low 

complexity of the genomic sequences. We measured the ratio of low complexity sequences in 

individual peak regions identified by NSEG with default parameters
18
, and the result shown in 

the plot below suggest almost all of the peaks consist of middle- or high-complexity sequences.  

 
Figure S4: Ratio of low complexity sequences within the CAGE peaks 

 
 

Finally, we examined read counts actually observed in the spanning regions of individual peaks, 

(our threshold of read counts for the robust and the permissive set is applied to individual TSS 

within a peak but under the entire span of the peak there can be considerably more tags). The 

plots indicate maximum and total read counts of the peaks across all the CAGE profiles, and 

indicate the robust peaks are supported and quantified by substantial observations (typically 

more than 100 reads). 
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Figure S5: Maximum and total read counts of the CAGE peaks 

 
 

4.2 Comparison of identified CAGE peaks to chromatin state defined candidate TSS regions 

Recently the ENCODE consortium have extensively used computational classifiers for genome 

segmentation that integrate genome-wide datasets on chromatin states to assign biological 

interpretations along the genome, which includes predictions of TSS segments. To examine 

whether the peaks identified by the FANTOM5 CAGE profiles were independently supported by 

these predictions based on chromatin states we compared CAGE peaks identified in four of the 

ENCODE cell lines (HepG2, K562, GM12878, HeLa-s3 were run as biological triplicates within 

the FANTOM5 dataset, using matched RNA supplied by ENCODE members) with the TSS 

segments identified by ENCODE
19
 in the same cell lines using chromatin marks. For this 

analysis we selected a segmentation track integrating ChromHMM
20
 and Segway

21
 as reference, 

and considered a CAGE peak and a TSS segment as ‘closely located’ if they are within 1000bp 

(note: ChromHMM provides its results at 200bp resolution and we set the 1000bp threshold to 

make the two distinct datasets comparable). In addition, for this specific analysis we applied the 

robust and permissive thresholds on the individual CAGE profile being compared to the 

corresponding chromatin marks (e.g. robust in K562 replicate 1 means there is a position with 11 

or more reads from K562 replicate 1). The result (Fig. below) indicates that our thresholds are 

very strict in general. Of the CAGE peaks supported by the robust threshold, ~90% or more 

peaks are supported by the TSS segments. The remaining peaks (~10%) could be explained by 

difference of method and/or general limitations of large-scale studies. The result indicates that 

the robust CAGE peaks represent true TSSs with high confidence. For the permissive threshold, 

~80% or more peaks are supported by TSS segments. Even the permissive peaks represent true 

TSSs with substantial confidence. Conversely however only 30-40% of the TSS segments called 

by ENCODE in these cell lines also had CAGE peaks above the robust or permissive thresholds 

within the corresponding profiles. This could suggest a high false negative rate in the FANTOM5 

peaks but could also suggest that the ENCODE TSS segments are not genuinely active or are 

transcribed at very low levels (Note: this is discussed in more detail in the main text). Up to 80% 

of ENCODE TSS regions are covered by at least one CAGE read, but at the expense of lost 
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specificity. Overall, the analysis demonstrates that our thresholds are very strict and the selected 

CAGE peaks represent active promoters with high confidence (~90% for the robust set, and 

~80% for the permissive set). 
 

Figure S6: Specificity and sensitivity of the CAGE peak thresholds (ENCODE integrated segmentation tracks 

are used as reference) 
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4.3 Assessment of decomposed peaks 

DPI is designed to decompose larger clusters if they are composed of CAGE peaks with distinct 

expression profiles. To assess the performance of this we re-grouped peaks that were within 

100bp of another into putative ‘composite promoters’ and tested whether the expression profiles 

were indeed distinct. The grouping identified 35,877 composite promoters consisting of two or 

more peaks (corresponding to 106,721: 58% of the human robust peaks). The remaining 78,106 

(42%) robust peaks were ‘singleton peaks’ more than 100bp from another peak.  

Then we asked if read counts of the different peaks in the same composite promoter arose from 

the same expression pattern over the profiled biological states, by using the likelihood ratio test 

where the read counts are modeled as a negative binomial distribution. We set its over-dispersion 

parameter as 0.06 (corresponding to ~25% standard error), which is a little larger than 

experimental estimation by edgeR
22
 (0.026 for human, and 0.056 for mouse biological replicates; 

see the next section) to make our assessment conservative. With FDR < 1% threshold, we found 

22,471 composite promoters consisting of multiple peaks with non-identical expression patterns, 

which corresponded to 72,862 (39%) robust peaks. The remaining 13,406 composite promoters 

had multiple peaks (33,859) with expression patterns too similar to discriminate using the above 

criteria (see main Fig. 1d). Running the same analysis on the mouse robust peaks, found 

equivalent results. Note that the peak identification method described above (DPI) considers 

heterogenic transcription by estimation of underlying multiple profiles, and this result confirmed 

that a majority (~eighty percent) of the robust peaks represent their own transcription initiation 

events based on a conventional statistical method applicable only after peaks are identified.  

 

4.4 Quantification of transcription initiation activities (peak expression profiles) 

Using the robust peaks defined above we counted tags which 5’ end alignments (mapping quality 

>=20, percent identity >= 85%) started within the boundaries of individual robust peaks.  We 

selected 889 human profiles and 389 mouse profiles which had a minimum of a half million 

mapped CAGE reads for this expression analysis, since shallow profiles would not be very 
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reliable for quantification of TSS activities. We counted the CAGE reads arising from individual 

CAGE peaks in each of the selected profiles and normalized the counts as TPM (tags per 

million) based on the library size and normalization factors estimated by edgeR22 using the 

relative log expression (RLE) method23. All of the expression analyses in our paper are based on 

these expression values.  

 

Based on the quantified expression above, we assessed the variability of biological replicates in 

our dataset (replicates from multiple donors were available for most of the primary cells). We 

estimated the overdispersion parameter (common dispersion) by using edgeR
22
, and found 0.026 

for human and 0.056 and for mouse, which corresponds to 16% ~ 24% of standard error. In 

comparison technical variability of HeliScopeCAGE sits at 5.3% standard error (that is, 

overdispersion parameter 0.003) described in another study (Kawaji et al. in press). Thus the 

biological variability is larger than technical variability and the variability across replicates is 

roughly 25% in the dataset overall. 

 

4.5 Gene associations 

As expected many of the CAGE peaks are very close to (or overlapping) known TSSs on the 

genome.  
 

Figure S7: Association of CAGE peaks to annotated TSS.  

A 500bp threshold was chosen for known TSS association. The plots show the distribution of the distances between 

CAGE peaks and annotated TSSs, according to the classes of the associated EntrezGene entries. a, robust count 

distribution. b, robust density distribution c, permissive (non-robust) count distribution, d, permissive (non- robust 

density distribution. Note, mouse has similar distributions (not shown). Coverage of Refseq 5' ends in the 

FANTOM3, 4 & 5 and ENCODE CAGE datasets for e, human, f, mouse 

WWW.NATURE.COM/NATURE | 12

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature13182



To systematically annotate them based on their relationships with known genes and transcripts, 

we compared them to the following gene models downloaded from the UCSC Genome database 

January 2012: RefSeq24, , UCSC known gene25, Gencode V726 transcripts (for human), 

ENSEMBL27 transcripts (for mouse), and full-length mRNA tracks. CAGE peaks were assigned 

to a gene or transcript if their 5’ end was on the same strand and within 500bp of the 5’ end of the 

transcript model. In this process, gene models whose 5’-ends do not correspond to transcription 

starting sites (e.g. snoRNA, snRNA, and miRNA 5’ ends result from cleavage of primary 

transcripts) were given lower priority. From the transcript and gene associations we further 

extended the annotation and provided HGNC gene symbols, EntrezGene IDs, and UniProt IDs 

(if coding) according to their association with the selected gene models. The tables below show 

the number of genes associated with each reference model and different Entrez gene classes. 
Number of peaks associated with genes 

      TranscriptTranscriptTranscriptTranscript    
(RefSeq, (RefSeq, (RefSeq, (RefSeq, 
GENCODE/ENSEMBL, GENCODE/ENSEMBL, GENCODE/ENSEMBL, GENCODE/ENSEMBL, 
UCSC Known Genes, UCSC Known Genes, UCSC Known Genes, UCSC Known Genes, 
mRNAs)mRNAs)mRNAs)mRNAs) 

ProteinProteinProteinProtein    
(UniProt)(UniProt)(UniProt)(UniProt) 

HGNCHGNCHGNCHGNC EntrezGeneEntrezGeneEntrezGeneEntrezGene 

humanhumanhumanhuman permissivepermissivepermissivepermissive 294,765 136,741 245,829 245,514 
 robustrobustrobustrobust 93,558 56,011 82,257 82,150 

mousemousemousemouse permissivepermissivepermissivepermissive 146,148 101,130  131,998 
 robustrobustrobustrobust 61,072 47,755  56,744 

 

Number of peaks associated with EntrezGene categories 

     humanhumanhumanhuman proteinproteinproteinprotein    
codingcodingcodingcoding 

pseudopseudopseudopseudo miscRNAmiscRNAmiscRNAmiscRNA    
(incl. miRNA)(incl. miRNA)(incl. miRNA)(incl. miRNA) 

snRNAsnRNAsnRNAsnRNA    
scRNAscRNAscRNAscRNA    
snoRNAsnoRNAsnoRNAsnoRNA 

otherotherotherother    
unknownunknownunknownunknown 

humanhumanhumanhuman permissivepermissivepermissivepermissive 237,424 1,254 5,808 454 818 
 robustrobustrobustrobust 79,735 489 1,755 126 163 

mousemousemousemouse permissivepermissivepermissivepermissive 127,445 949 4,098 64 79 
 robustrobustrobustrobust 55,217 435 1,356 22 16 

All peaks in the dataset have persistent names consisting of chromosome, chromosomal co-

ordinates, and strand (anchored to build Hg19 and Mm9 of the human and mouse genomes), 

however to aid researchers familiar with gene names we assigned peak names consisting of a 

peak number and a gene symbol where available. We discussed nomenclature of transcription 

starting sites in the FANTOM5 consortium extensively and reached a consensus that peak names 

should consist of gene symbols and numbers, allowing us to distinguish individual peaks used by 

a gene. We could not however find any optimal numbering scheme that would circumvent 

updates. For example, A) if we decided to call a peak with the highest expression level as the 

first TSS, it would not necessarily be the most active TSS if we change the biological states we 

profiled, B) if we numbered them based on proximity to the gene, new transcripts and new 

promoters would change the ordering. We decided that any numbering would be arbitrary, and 

therefore took a very simple approach: we numbered the CAGE peaks associated with the same 

gene according to the number of total read counts. For example, we named the peak 

chr10:102820579..102820585,+ as “CAGE peak 5 at KAZALD1 5end” (p5@KAZALD1 in a 

short form), since it is fifth peak in terms of total read counts within the peaks associated with 

KAZALD1. We admit this is arbitrary choice, but this is similar to the situation of annotated 

transcript variants (isoforms), and yet this is still useful to the scientific community for 

exchanging our observations on transcription starting sites. Finally peaks that were not assigned 

to known genes were given the short form (p@chr...  as a peak name). 
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5. Sample ontology creation and sample ontology enrichment analysis (SOEA) 

Ontology creation 

The FANTOM5 Sample Ontology was generated using a combination of automated and manual 

methods. First, each sample description was scanned for occurrences of terms from a number of 

open biological ontologies: CL28 (cell types), Uberon29 (tissues and gross anatomy), DO30 

(diseases) and EFO31 (treatment types). We used the Biomedical Logical Programming Toolkit 

(http://blipkit.org) for the entity matching. The matched terms were then used to automatically 

annotate each sample, creating a composite description. The annotations were validated and 

augmented by the ontology curators using a combination of visual inspection, and curation using 

the OBO-Edit
32
 ontology creation tool. This was performed iteratively, with each FANTOM5 

update, with the updated version released to consortium members each time. Consortium 

members also performed additional validation, in some cases leading to upstream fixes in the cell 

and anatomy ontologies. 

 

Sample ontology enrichment analysis 

To summarize promoter activities (expression profile of a TSS region) across ~1000 samples, we 

performed enrichment analysis based on FANTOM5 Sample Ontology (FF ontology). The 

question here is “in which type of samples the promoter is more active”. To answer this question, 

we compared expressions (TPMs) in the samples associated with a sample ontology term and the 

rest of the samples by using the Mann-Whitney rank sum test. We iterated this test for all the 

ontology terms and selected only the terms with false discovery rate33 below 1%.  

To summarize ontologies enriched in a particular co-expression cluster, we ran the same analysis 

above except it was carried out on an averaged expression profile of all promoters that make up 

the cluster. The averaged expressions are calculated as followings: (i) calculate median TPM 

value in a promoter, (ii) produce fold changes to the median value, and convert their logarithm, 

and (iii) averaged the resulting values across promoters (TSS regions). 

 

6. Supervised TSS classification using random decision tree (RDT) ensembles.  

A training set comprised of both positive and negative sequences was extracted from the data. 

Gaussian models were trained to capture the relative distribution of 4-mer occurrences 

surrounding annotated DPI clusters. Each sequence was scored against all models resulting in a 

256 wide vector of values for each sequence. The latter together with the cluster label was used 

to construct a random decision tree ensemble model34,35. Finally, the RDT model was used to 

classify test sequences not used in the training of any models. To obtain final prediction scores, 

we performed 2,4,6,8,10-fold cross validation, each five times, and averaged the predictions for 

each cluster over all runs in which the cluster was not used for training. We plotted ROC curves 

to assess the accuracy of our classifier using the pROC software
36
. All novel TSS clusters were 

counted as false positives making this assessment very strict. Compared to known gene models 

our methods achieved an AUC of 0.93 in human (See Fig S17 in Supplementary note 2) and 

0.94 in mouse. To derive thresholds on our predictions we determined the prediction score at 

which sum of sensitivity and sensitivity is maximal. We also compared the set of TSS classified 

DPI clusters to ENCODE genome segmentation tracks based on chromatin marks (See Fig S17 

c). In all four cell lines used here, the TSS classified set contained the largest fraction of clusters 

overlapping promoter segments as defined by ENCODE chromatin marks. The source code is 

available on sourceforge (http://sourceforge.net/projects/tometools/). 

 

WWW.NATURE.COM/NATURE | 14

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature13182



7. De novo-motif discovery. 

The cell state-specific and total robust CAGE cluster sets were searched for enriched motifs 

using four independent de novo algorithms as outlined below. 

 

Discovery of cell type- or tissue-specific sequence motifs using ChIPMunk 

Cluster selection: CAGE clusters identified in all samples of the human dataset with ≥ 0.5 mio. 

reads by method published by Yu et al.
37
 were used as initial data. We selected the clusters with 

the expression enrichment greater than 5 and the strict 1e-5 P value cutoff. The ChIPMunk motif 

discovery pipeline was applied independently to the list of TSS-clusters for each sample. For 

each TSS-cluster we extracted DNA regions from 300bp upstream of the cluster start to 100bp 

downstream of the cluster end. 

 

Motif discovery: ChIPMunk
38
 allows incorporating prior positional information to account for 

motif positional preferences. For each sequence we generated trapezium-shaped positional priors 

equal to zero on both sequence ends and having the maximal height along the TSS-cluster extent. 

The height of the trapezium corresponded to the TSS-cluster expression value. This procedure 

allowed us to search for motifs mostly associated with the highly-expressed clusters preferably 

located close to transcription start sites. Two background models were used: (i) the uniform 

nucleotide frequency distribution (0.25 for all nucleotide frequencies) and (ii) the average 

composition for all sequences related to the particular sample. The basic ChIPMunk procedure 

identifies a single motif for a sample, so the ChIPHorde add-on was used to execute ChIPMunk 

several times and detect up to 3 distinct motifs by masking with poly-Ns the motif hits identified 

in the previous run. The final results included a maximum of 6 motifs per sample detected in 2 

ChIPHorde runs with 2 defined background models. The maximum motif length was fixed at 

12bp; a single-box informative prior was used for motif discovery as in
39
. For each detected 

motif, ChIPMunk reported the Kullback Discrete Information Content and the weight of the 

alignment (taking into account the weights of the sequences derived from trapezium-profile 

heights). 

 

Motif filtering: To produce a non-redundant motif list, all ChIPMunk motifs were sorted 

according to the following criteria: the masking step (see below), the motif length (starting from 

the longest motif and then selecting the motifs with the length decreasing), and the alignment 

weight (starting from the alignment with the greatest weight and then selecting the motifs with 

the alignment weight decreasing). The masking step could be 0, 1, or 2, where 0 corresponded to 

the motif discovery on the initial sequence set (thus all motifs identified from the initial data 

went earlier in the list), then followed all the motifs obtained in the second round of motif 

discovery (the masking step of 1 with all the motifs found in the first run masked with poly-Ns), 

and finally, the motifs obtained in the third round of motif discovery (the masking step of 2, the 

hits obtained in motif discovery after masking motifs found in two initial rounds). With the 

sorted initial list of motifs at hand we then produced the filtered list of motifs using a simple 

greedy approach. The top motif from the sorted list was picked and all similar motifs (having the 

similarity value above a threshold) were removed from the list. Then the second best motifs were 

selected, and this procedure was repeated until the end of the list was reached. Similarity values 

were computed as in Ref
39
 by the MACRO-APE

40
 software (http://autosome.ru/macroape/) at a 

fixed motif P value of 0.0005 and the filtering motif similarity threshold of 0.15, which resulted 

in the final set of 1019 non-redundant motifs. 
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Discovery of cell type- or tissue-specific sequence motifs using Dragon Motif Finder (DMF) 

Cluster selection: Sample-specific regulatory motifs were discovered for the 184,827 robust 

human CAGE clusters (described in a previous section) and the 889 human CAGE libraries for 

which RLE-normalised expression values were available (procedure also described in a previous 

section). Sample-specific CAGE clusters (SSCs) were defined as having greater than or equal to 

10.0 RLE-TPM and at least ten-fold higher than the median expression of this cluster across all 

available CAGE libraries. This approach resulted in an average of 1,411 SSCs per library. For 

each human CAGE library a set of matching background CAGE clusters was determined by 

selecting all robust CAGE clusters that were not selected as SSCs for the particular CAGE 

library. The genomic sequences for these SSCs and background CAGE clusters were extracted 

after adding 300nt upstream and 100nt downstream of each cluster. The sets of SSC sequences 

cover on average 614knt.  

 

Motif discovery: An OpenMP parallelised version of the Dragon Motif Finder (DMF)
41,42

was 

used to identify ab-initio motifs in each set of SSC sequences, using the corresponding 

background sequences to determine statistical significance of the motifs. For each set of SSCs 

we determine 1,600 raw motifs of variable length. DMF is parameterised in such a way that 

significant core motifs or length 5, 6, 7 and 8 are determined and subsequently extended 

upstream and downstream by a maximum of 10nt until a considerable drop in the motifs 

information content is detected. This results in a maximum possible motif length of 28nt. As a 

matter of fact this length is almost never achieved. For speed-up the algorithm is also set to 

operate at 95% accuracy within a 95% confidence interval using a 50% proportion sample.  

 

Motif filtering: For each set of SSCs the 1,600 raw motifs are post-processed in the following 

way. Firstly all motifs were removed that did not appear in at least 5% of SSC sequences, that 

did not appear in 10% more SSC sequences compared to their appearance in background 

sequences, or that had an uncorrected P value greater than 0.05 (the P value for each motif was 

calculated using a student’s t-test for independent variables, given an imaginary 2x2 contingency 

table with the values: number of SSC sequences that show at least one occurrence of the motif, 

number of SSC sequences that show no occurrence of the motif, number of background 

sequences that show at least one occurrence of the motif, number of background sequences that 

show no occurrence of the motif). Secondly, redundancy was reduced by eliminating similar 

motifs in the remaining set of motifs. For this purpose pair-wise Pearson correlation coefficients 

were calculated between all motifs. This was done by sliding the shorter motifs along the longer 

to account for partial overlaps. A minimum overlap of 5nt or 50% of the length of the longer 

motif was required. The maximum correlation coefficient out of all possible mutual positions of 

the two motifs is selected. All motifs were removed that had a correlation coefficient greater than 

0.75 with a motif that had a smaller associated P value. Examples of sample specific motifs that 

were extracted in this manner can be seen in Extended Data Fig. 5b, sample specific motifs 

extracted with DMF for all human libraries can be found online here 

http://cbrc.kaust.edu.sa/ft5motifs/. For inclusion in the downstream motif analysis, a second 

round of ab-initio motif discovery was performed on the mouse and human promoteromes to 

detect general sequence motifs. Here, genomic sequences (300nt upstream and 100nt 

downstream) around all 184,827 robust human CAGE and 116,277 robust mouse CAGE clusters 

were extracted. A copy of these sequences in which the nucleotide order was randomly shuffled 
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was used as a set of background sequences. 1,600 raw motifs of variable length were determined 

in the same manner described above under Motif discovery with the exception that for this run 

the algorithm accuracy was set to 100%. Subsequently the 1600 raw motifs were filtered as 

described above under Motif filtering, with the exception that motifs were removed that had a 

Pearson correlation coefficient of greater than or equal to 0.9 with a more significant motif. After 

this step 848 human and 837 mouse ab-initio motifs remained that were integrated into the 

downstream analysis.. 

 

Discovery of cell type- or tissue-specific sequence motifs using HOMER 

Cluster selection: Sample-specific clusters were determined from 184,827 robust human or 

116,277 robust mouse CAGE clusters (described in a previous section) and the 889 human and 

the 389 mouse CAGE libraries for which RLE-normalised expression values were available 

(procedure also described in a previous section). Sample-specific CAGE clusters (SSCs) were 

defined as having greater than or equal to 2.5 RLE-TPM and being at least eight-fold higher than 

the sample bias-corrected median across all libraries. The latter was determined by hierarchically 

clustering RLE-normalized CAGE cluster tag counts of all samples, choosing a tree cut-off that 

resulted in 31 human and 47 mouse clusters (representing samples with similar expression 

profiles), averaging tag counts across each cluster of samples showing similar expression profiles 

and finally calculating the median across averaged cluster tag counts. For de novo motif 

discovery, genomic coordinates of each SSC were extended by adding 300bp upstream and 50bp 

downstream. Extended SSC that overlapped were merged before applying motif discovery. This 

approach resulted in an average of 2146 merged SSCs per human and 2158 merged SSCs per 

mouse library. 

 

Motif discovery: Motif enrichment was analysed using HOMER
43
 version 3, (a suite of tools for 

motif discovery and next-generation sequencing analysis (http://biowhat.ucsd.edu/homer/). 

Sequences of extended and merged SSCs were compared to ∼50,000 randomly selected genomic 
fragments of the average SSC size, matched for GC content and auto normalized to remove bias 

from lower-order oligo sequences. After masking repeats in SSC and background regions, motif 

enrichment was calculated using the cumulative binomial distribution by considering the total 

number of target and background sequence regions containing at least one instance of the motif. 

With HOMER, de novo motif discovery is divided into two phases starting with a global, 

exhaustive scan of all oligos for their enrichment, followed by a second local optimization of 

motif probability matrices using best oligos from the first phase as the initial seeds for the 

optimization. As motifs are discovered their instances are masked from the input sequence to 

avoid convergence of multiple motifs on the same highly enriched sequence elements. Twenty-

five motifs were searched for a range of motif lengths (7-14 bp) resulting in a set of 200 de novo 

motifs per sample.  

 

Motif filtering: To create non-redundant motif collections for SSCs, each set of sample-specific 

de novo motifs was ranked and reduced as follows. All motifs were removed that had an 

uncorrected enrichment P value above 10
-18
, did not appear in at least 50 SSCs, and that had a 

limited information content (< 1.5). Motifs were then checked for redundancy by aligning each 

pair of motifs at each position (and their reverse opposites) and scoring their similarity to 

determine their best alignment (matrices are compared using Pearson's correlation coefficient by 

converting each matrix into a vector of values; neutral frequencies (0.25) are used in positions 

WWW.NATURE.COM/NATURE | 17

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature13182



where the motif matrices do not overlap). All motifs were removed that had a correlation 

coefficient greater than 0.75 with a motif that had a smaller associated P value.  

 

Discovery of cell type- or tissue-specific sequence motifs and modules using ScanAll 

Cluster selection: Sample-specific clusters were determined from 184,827 robust human or 

116,277 robust mouse CAGE clusters (described in a previous section) and the 889 human and 

the 389 mouse CAGE libraries for which RLE-normalised expression values were available 

(procedure also described in a previous section). Sample-specific CAGE clusters (SSCs) were 

defined as having greater than or equal to 10.0 RLE-TPM and at least ten-fold higher than the 

median expression of this cluster across all available CAGE libraries. In order to use ScanAll for 

ab-initio motif discovery, the genomic sequences for these SSCs clusters were extracted after 

adding 300nt upstream and 100nt downstream of each cluster. 

 

Motif discovery: ScanAll (Dalla et al. in preparation) aims at finding structured substrings 

common to a significant portion of the sequences in the input set, allowing a fixed layout for 

mismatches in the input itself. The general strategy is based on the introduction of a data 

structure encoding ‘a la Karp-Rabin’ substrings of the strings in the SSCs. ScanAll started by 

outputting all the positions of the common subsequences of length ℓ=6 and with d=1 variations, 

with the addition of the constraint for the variations, if occurring, to be in the same location and 

never occurring in the first position of the element. During this phase we identified 4198 unique 

conserved elements with the required layout. 

 

Module selection: ScanAll then encoded and manipulated these motifs, introducing a distance 

constraint to identify groups of motifs located within a given range (<40,90> minimum-

maximum nucleotide distance). This allowed on the one hand to find higher levels structures 

corresponding to putative regulatory modules, while on the other hand to reduce the size of the 

motifs discovered, since only the module-composing motifs were kept. The background model 

was built maintaining the sequence-specific dinucleotide composition of each sequence related to 

every FANTOM5 sample. Two shuffled background datasets were generated and were analyzed 

using ScanAll, as described above. 

 

Motif filtering: Sequential filtering steps were applied to each sample, during motif and module 

discovery, in order to obtain a significant and non-redundant regulatory elements list. First of all 

we introduced two thresholds (that we called “quorum”) to the motif- and module-discovery 

phases. Newly-discovered motifs, with the aforementioned layout, were only retained if present 

in at least 150 different sequences of SSCs. Subsequently, motif-derived modules were preserved 

only if conserved in at least 60 different promoters. During the module-building phase we 

introduced another parameter, that we called “complexity”, that corresponds to the number of 

different nucleotides required to appear in every motif, and we fixed this value to 4 (that is, for 

motif “AACnG” the only acceptable solution is “AACTG”) in order to prevent ScanAll from 

taking into account any low complexity, highly-conserved genomic element. Afterwards, 

overlapping motifs were merged into consensus sequences ending with the best layouts selection 

and the generation of a non-redundant list of modules. Finally, Z-scores and their associated P 

values (p<0.05) were calculated with a continuity correction
44
 comparing the results obtained for 

each sample to the relative background sequences. In the end, 1370 human and 1277 mouse non-

redundant motifs were obtained. 
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8. Clustering and assessment of novel motifs 
Overview of the procedure 

We first clustered the known motifs together with motifs discovered de novo in the vicinity of 

CAGE clusters to estimate the optimal threshold for cutting a hierarchical clustering tree of 

motifs. Next, we removed all de novo motifs similar to the already known motifs to arrive at the 

set of novel motifs, which were then clustered using the previously selected threshold. For each 

cluster, one representative motif was selected, thus forming the non-redundant set of novel 

motifs. These non-redundant novel motifs were assessed for the statistical significance of their 

correlation with promoter expression across samples. 

 

1. TFBS motif sets. 

We used the following collections as sources of known motifs: HOCOMOCO
39
 integrated TFBS 

models (426 motifs); HOMER known motifs, based on ChIP-Seq analysis (138 motifs); 

JASPAR
45
 core vertebrate (130 motifs); SwissRegulon

46
 collection (190 motifs); UniPROBE

47
 

collection of matrices for mouse and human TFs (413 motifs); and the human regulatory 

LEXICON
48
 collection obtained from DNase I hypersensitive footprints (683 motifs). To remove 

known motifs from the de novo motifs, we also filtered against the human and mouse motifs in 

TRANSFAC release 2012.249. 

 

The de novo motif resultsfor each method were then combined(human/mouse respectively): 

ChIPMunk
38
 (1619 / 630 motifs); DMF

42
 (848 / 837 motifs); HOMER

43
 (1426 / 692 motifs); 

ScanAll(1370 / 1277 motifs). The combined set consisted of 10679 motifs. Position count 

matrices from each collection were transformed to weight matrices using the log-odds 

transformation with a pseudocount of 0.5. 

 

2. Constructing the hierarchical tree  

We used the UPGMA
50
 approach to produce a linkage tree using pair wise similarities calculated 

for all motif pairs following the strategy described in
39
. The MACRO-APE

40
 software 

(http://autosome.ru/macroape/) was used to obtain the similarity value for all pairs of motif 

models (the model being a combination of a positional weight matrix and a score threshold). 

MACRO-APE computes a variant of Jaccard measure for two motif models: the similarity is 

defined as the number of words recognized as TFBSs by the both models, divided by the number 

of words recognized by any of them. The threshold levels of motif models were selected 

corresponding to the P value level of 0.0005 referred to the random sequence with uniform 

nucleotide composition (i.e. 5 out of 10000 random words are recognized as positive hits; this 

approximately corresponds to 1 PWM hit per 1000bp of a random double-strand DNA 

sequence). 

 

2a. Producing clusters based on the hierarchical tree 

To produce clusters from the hierarchical tree the branches were cut at the level corresponding to 

the given threshold for the link length. Each cluster corresponded to a particular branch. 

 

2b. Estimating the link length threshold for clustering 

To estimate the link length threshold we clustered all de novo and all known motifs together and 

plotted the number of clusters that contained known as well as de novo motifs, or “the annotated 
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clusters”, versus the link length threshold value. The curve reached a clear extreme at a link 

length threshold of around 0.95. The maximum of 218 annotated clusters corresponded to the 

link length threshold equal to 0.9586. The same number of annotated clusters was observed for 

two close link length threshold values. We selected the higher link length threshold value and 

thus the lesser overall number of clusters. 

 

3. Using TomTom to identify novel motifs among the de novo motifs 

To assess the similarity of the 8699 de novo motifs to known motifs, we ran the TomTom
51
 motif 

comparison software for each of the de novo motifs against the HOCOMOCO, HOMER, 

JASPAR, SwissRegulon, UniPROBE, TRANSFAC, and ENCODE Lexicon databases separately. 

A de novo motif was considered similar to a known motif if the E-value as calculated by 

TomTom was less than 0.5, corresponding to less than 1 hit being expected at random. A known 

motif was found for 7478 of the 8699 de novo derived motifs, while the remaining 1221 de novo 

motifs were deemed novel. 

For the purpose of evaluating the coverage of databases of known motifs, we ran TomTom for 

each of the known motifs against the combined set of de novo motifs. However, simply merging 

the de novo motifs generated by the four de novo motif finding methods would give rise to a 

certain degree of redundancy among motifs in the merged set. This would disproportionately 

inflate the E-value as reported by TomTom, as it depends on the size of the database against 

which it is run. We therefore first ran TomTom for each known motif against all de novo motifs 

and identified the de novo motif that best matches the known motif according to the P value 

reported by TomTom. In total, we found 1105 de novo motifs that were the best hit for at least 

one known motif. We then created a database of these 1105 best matching de novo motifs and ran 

TomTom for each known motif against it, applying a threshold of 0.5 on the E-value. This 

revealed that the de novo motifs cover the vast majority of motifs in the known motif databases 

(Extended Data Fig. 5c). 

 

4. Creating a non-redundant motif set by UPGMA clustering 

We used Biopython
52
 to calculate the position-weight matrix scores for each of the 1221 novel 

motifs in the -300..+100 base pair region around the representative position of each of the robust 

promoters in both human and mouse. Here, the representative position of a promoter is defined 

as the position within the promoter that has the highest total number of CAGE tags across all 

samples. Using a prior probability Pr(T) equal to 5 × 10-4, we calculated the posterior probability 

Pr(T|SF, SR) of a predicted TFBS as 
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where SF and SR are the position-weight matrix score on the forward and reverse strand, 

respectively. Retaining all predicted TFBSs with a posterior probability larger than 0.25, for each 
motif separately, we averaged over the robust promoters the posterior probabilities of TFBSs 

predicted at a distance d with respect to the representative position of the promoter to arrive at 

the probability Pr(T|d) of detecting a TFBS as a function of the distance d. The profile of a motif 

along the -300..+100 base pair search region R is then calculated as 

( ) ( ) ( ) ( )
( ) ( )

( )
( )

( )
( )

Rd

Rd
Rd

d

d

d
R

d

dd

dd
RdRdf

∈
∈

∈

==⋅=⋅≡
∑∑

'

'
'

'TPr

TPr

'TPr
1

TPr

'Pr'TPr

PrTPr
TPr , 

WWW.NATURE.COM/NATURE | 20

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature13182



|R| = 401 base pairs being the size of the search region R, as a priori Pr(d) is independent of d. 

For each predicted TFBS, the posterior probability of predicting a TFBS with position-weight 

matrix scores SF and SR at a position d with respect to the promoter is 

( ) ( ) ( )
( ) ( ) ( )RFRF
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,TPr1,TPr
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,,TPr

SSdfSS

dfSS
dSS
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= . 

For each promoter and each motif, we summed over the search region R the posterior 

probabilities Pr(T|SF, SR, d) exceeding the threshold of 0.25 to arrive at the predicted number of 

binding sites for each motif at each promoter. 

We then clustered the 1221 novel motifs using MACRO-APE
40
, and cut the tree at the previously 

determined link length threshold selected, arriving at 172 clusters of novel motifs. We calculated 

the Pearson correlation between the CAGE expression of the human robust promoter set in each 

sample and their associated TFBSs for the 1221 novel motifs. For each of the 172 clusters, we 

selected the motif with the largest squared correlation summed across samples as the 

representative motif. We discarded 3 clusters for which the motifs were too weak to generate 

TFBSs at any of human robust promoters at the 0.25 threshold on the posterior probability. We 

thus arrive at a non-redundant set of 169 novel motifs. 

 

5. Evaluating the non-redundant novel motifs for significance. 

To assess the statistical significance of the association of motifs with expression in particular 

samples, for each novel motif we randomized the order of the positions of the position-weight 

matrix, predicted TFBSs at each promoter as described above for each randomized matrix, and 

calculated the correlation between promoter expression and associated TFBSs. Using 1000 

randomizations for each of the 169 novel motifs, we calculated the mean and standard deviations 

of these correlations, and expressed the correlation found for the novel motif as a Z-score with 

respect to this mean and standard deviation. We then calculated a P value for each novel motif in 

each sample as the two-sided tail probability corresponding to this Z-score under the normal 

distribution. We apply the Bonferroni correction for multiple testing by multiplying the P value 

by the number of samples. Requiring a significance level of 0.05 on the corrected P value in 

either human or mouse yielded 37 significant novel motifs shown in Supplementary Table 12 

(sequence logos generated by WebLogo53), together with the samples in which they were found 

significant. The frequency matrices of these novel motifs are available online at 
http://fantom.gsc.riken.jp/5/data/. 
 

6. Evaluating the significance of the binding profiles of the non-redundant novel motifs 

For each of the significant novel motifs, we calculated the Kolmogorov distance between the 

calculated binding profile f(d) and a uniform binding profile, and expressed this distance as a Z-

score with respect to the Kolmogorov distances calculated for the 1000 randomized motifs. The 

corresponding P value was then calculated as the one-sided tail probability for this Z-score under 

the normal distribution. These P values, calculated separately for human and mouse, are shown 

in Supplementary Table 12. As comparison, we ran the same test on the JASPAR collection of 

motifs. For 112 we can calculate the significance (the remaining 18 motifs, the information 

content was too low to predict TFBSs anywhere with a position-weight matrix model). Of these 

112 motifs, 81 were significant in human or mouse (72 were significant in human, 74 were 

significant in mouse; of these with 65 were significant in both human and mouse (P value = 3.6e-

13, Fisher's exact test)).  
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7. Evaluating the overrepresentation of the novel motifs in co-expression clusters 

For each novel motif, we calculated the number of TFBS predictions in promoters included each 

of the co-expression clusters by summing the posterior probabilities of predicted TFBSs. We also 

calculated the expected number of TFBS predictions by averaging the sum of the posterior 

probabilities over all promoters. For each of the co-expression clusters, for each motif we 

multiplied this average by the number of promoters in the co-expression cluster to arrive at the 

expected number of TFBS predictions under the null hypothesis. We then calculated the tail 

probability of achieving at least the observed number of TFBS predictions under the Poisson 

distribution with a mean equal to the expected number of TFBS predictions under the null 

hypothesis. For each of the 37 novel motifs, the most significant cluster in human and in mouse, 

together with the corresponding P values, are shown in Supplementary Table 12. 

 

8. Genomic Regions Enrichment of Annotations Tool (GREAT) analysis 

For each of the 169 novel motifs, we considered the -300 to +100 base pair genomic region with 

respect to each of the human robust peaks, and assigned it to the foreground set if any predicted 

TFBSs for the motif were associated with the peak, and to the background set otherwise. We then 

ran GREAT
54
 to discover Biological Process gene ontology terms that are enriched in the 

foreground set compared to the background set, and then performed the same analysis 

independently for mouse. For each of the 169 novel motifs, we calculated the overlap between 

the top-500 gene ontology terms found in human and the top-500 gene ontology terms found in 

mouse. To evaluate the statistical significance of this overlap, for each of the 169 novel motifs 

we also calculated the overlap between the top-500 gene ontology terms found in human and the 

top-500 gene ontology terms found for a different novel motif in mouse. Using the set of values 

for the overlap between non-matching motifs in human and mouse as the background 

distribution, we then calculated the statistical significance of the overlap for a novel motif as the 

tail probability of finding at least the same overlap in the background distribution (Fig. A below). 

 

 
 
Figure S8: Significance of overlap in GREAT enrichment results for human and mouse on the same motif. For 
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each of the 169 novel motifs, we applied the Genomic Enrichment of Annotations Tool GREAT
54
 to identify, both in 

human and in mouse, the gene ontology terms of biological processes enriched given the predicted TFBSs, and 

evaluated the overlap in the top-500 gene ontology terms between human and mouse. For each novel motif, the P 

value for the overlap was then evaluated by calculating its relative rank with respect to this background distribution. 

This Fig. shows the P values thus obtained, sorted by significance. As one of the novel motifs did not yield predicted 

TFBSs anywhere in the mouse genome at the thresholds we employed, its P-value could not be calculated and is 

therefore not shown in this Fig. 

 

9. MCL clustering of sample and CAGE promoter co-expression graphs 
The analysis of correlation networks has been used extensively to explore these data.  

Promoter correlations: In main Fig. 6 three samples of pooled RNA were excluded from the co-

expression clustering since they were not expected to contribute useful information. A Pearson 

correlation matrix was constructed consisting of pair wise comparisons of expression across the 

remaining 886 tissues, primary cell types and cell lines. Correlations with r < 0.75, 

corresponding to the 99.7th percentile, were ignored.  

 
Figure S9: Distribution of Pearson correlation coefficients in the FANTOM5 correlation matrix for Human 

Robust clusters. 

 

In order to more accurately reflect the biological implications of a strong correlation compared to 

a weak one, the dataset was then transformed by subtracting 0.75 from each correlation 

coefficient in the matrix. 

Clustering was performed using the MCL algorithm55, with an inflation value (MCLi) of 2.2 and 

pre-inflation set at 3.0. The MCL algorithm simulates flow through the network of Pearson 

correlations, prioritising edges conducting more flow until a stable arrangement of discrete 

clusters is obtained
55
. It is highly effective for clustering gene expression data

56
, and protein 

interaction networks
57
, and is strikingly robust to network perturbations, comparing favourably 
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to alternative methods
58
.   

One of the advantages of the MCL algorithm is that clustering is highly data-driven with minimal 

user input required. One key parameter is set by the user at the outset. The MCL inflation value 

(MCLi) range from 1 to 30, and determines the granularity of the clustering. A low inflation 

value results in a small number of large, inclusive clusters. A high value creates a large number 

of small clusters, with more nodes that do not belong to any cluster. The total number of nodes in 

the network is almost always lower than the number of entities in the original matrix. This is 

because many nodes do not form sufficiently strong correlations anywhere in the network, and 

are discarded since an unconnected node does not add information to the network.  

In order to explore the entire network (120,090 promoters), entire clusters were collapsed into a 

single node and displayed using BioLayout Express3D
59
, with node size proportional to the cube 

root of the number of promoters in each cluster. Edges indicate the Pearson correlation 

coefficient between the average expressions of each pair of clusters across the entire dataset. 

Clusters were automatically numbered in consecutive order of size, with the largest cluster 

designated Cluster 0 (C0), and named with a key word from each of the six samples in which 

expression of the cluster was greatest (most abundant first).  

Sample correlations: Shown in Extended Data Fig. 12 is a sample-to-sample correlation graph 

for the human promoterome data. In this instance each node represents an individual sample and 

edges Pearson correlations (r) > 0.75 between them. A sample-to-sample correlation matrix was 

calculated using the ‘mycor’ function within Bioconductor and the resultant graph displayed 

using BioLayout Express3D. In Extended Data Fig. 12a nodes are coloured according to whether 

they represent tissues (red), primary cells (cream) or cell lines (grey). It can be seen that all cell 

line data tends to be in one area of the graph indicating an overall similarity in the data 

irrespective of the type of cell (cancer) from which the cells are derived. In contrast the tissue 

and primary cell data is more widely distributed. This is better illustrated in Extended Data Fig. 

12b where the graph is coloured according to MCLi cluster 2.2. This shows many clusters to be 

highly enriched in samples derived from related tissues or cell types.  

TF Promoter correlations: Extended Data Fig. 8a shows a correlation graph constructed from 

data derived from all promoters associated with human transcription factors expressed in the 

primary cell samples. A Pearson correlation matrix was calculated so as to compare the profile of 

expression of each TF promoter and a graph constructed where r > 0.70 and clustered using an 

MCLi value of 2.2. In this way, groups of promoters showing a similar and often cell-specific 

expression profile could be identified. In all cases examined the cell-specific clusters 

recapitulated known the transcription factors associated with a particular cell type, however 

clusters frequently contained putative new associations between transcription factors and cell 

lineage specification.  

 

10. Accession numbers 
CAGE tag sequences from this study have been deposited at DDBJ DRA under accession 

number DRA000991. 

 

11. CpG and nonCpG associated CAGE clusters 

Expression specificity at CpG island (CGI) versus nonCGI-associated CAGE clusters 

The set of 184,827 robust human CAGE clusters was separated into 61,320 CGI and 123,495 

nonCGI-associated clusters, uisng the UCSC CpG Island track and then further separated into 

bins based on expression specificity (log ratio of expression of each cluster in a given sample 
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versus its pooled expression in the 889 human CAGE libraries for which RLE-normalised 

expression values were available).  

 

Distribution of general promoter features as a function of expression specificity and CGI-

association  

We obtained ChIP-Seq data for H3K4me3 and H2A.Z histone modifications as well as DNase-

seq data produced by ENCODE
60
 as listed in Supplementary Table 14. Sequence tags were 

mapped to the current human reference sequence (GRCh37/hg19) using Bowtie
61
. Average 

distribution of extended ChIP-Seq reads and DNase I hypersensitivity sites was visualized 

centered on dominant (most frequently used) TSS for CGI and non-CGI clusters separately 

across defined expression specificity bins using custom scripts in R. 

 

Distribution of transcription factor binding and motifs as a function of expression specificity and 

CGI-association  

We obtained published ChIP-Seq data for several transcription factors, Pol2, and P300
60,62

 as 

listed in Supplementary Table 14. Sequence tags were mapped to the current human reference 

sequence (GRCh37/hg19) using Bowtie
61
 and only uniquely mapped tags were used for 

downstream analyzes. Histograms showing the average distribution of mapped ChIP-Seq reads 

around binned CAGE clusters were generated using HOMER43. Corresponding transcription 

factor motifs were also generated and mapped using HOMER.  

 

12. Fantom3, 4, 5 and ENCODE CAGE comparison 

We compared CAGE datasets from four project on the basis of their coverage of known genes 

defined in RefGene. This comparison is challenging due to the different CAGE protocols
12,17,63

, 

processing pipelines and samples used over a period of 7-8 years. We attempted to lift over the 

coordinates of past CAGE clusters to hg19 but found that many are lost in translation. Hence we 

re-mapped all old CAGE datasets to hg19 using BWA
64
 with default parameters. For each 

sample we computed the expression (TPM normalized) of all RefGenes based on all reads in the 

vicinity (+/-500bp) of their annotated 5’ start site. Finally we plotted the distribution of 

maximum expression for all genes separated by project (Figure S7e,f). Reassuringly, both the 

coverage of genes and the distribution of maximum expression in each sample was very 

comparable between the projects.  

 

13. Mouse and human projections  

Human TSS were projected into the mouse reference genome and mouse into human through the 

Ensembl EPO12 eutherian mammal multiple sequence alignments65 using the Ensembl API 

(database and code release 67). The EPO12 alignments incorporate the GRCh37 (hg19) reference 

human genome assembly and the NCBI37 (mm9) reference mouse assembly. Using a single 

reference multiple sequence alignment ensured circular consistency of projections (human to 

mouse to human will find the original human locus) and allowed projection into other sequenced 

mammalian genomes for comparison and to provide an out-group to assign a branch and 

direction to evolutionary changes.  

 

Human (or mouse) TSS boundaries were used to define slices of the EPO12 alignments using the 

alignSlice function to resolve overlapping alignment blocks and to orient and order alignment 

blocks relative to the human (or mouse) genome. The TSS reference coordinate (modal tag 
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position) was projected though the alignment slice to obtain a projected reference position. In 

cases where the projected position falls in an alignment gap, the reference is projected onto the 

nucleotide at the closest edge of the gap but still within the alignment slice. In cases where the 

alignment slice is entirely gap but there is flanking aligning sequence on both sides of the 

alignment slice this is recorded as a “gap” alignment which indicates the deletion or insertion of 

the TSS sequence during genome evolution. In cases where the alignment slice cannot be 

projected into a genome at all, i.e. there is no syntenic interval that aligns across the slice, this is 

recorded as “unaligned”. In this case we don't have evidence to discriminate the evolutionary 

gain or loss of sequence from technical difficulties such as alignment or genome assembly 

problems or the absence of read coverage in the raw genomic sequence. After projecting 

reference coordinates, the outer margins of TSS intervals were mapped into the aligned 

sequences, requiring that they map into the same chromosomal locus as the projected reference 

position, +/-80 nucleotides. In cases of genomic rearrangements between species the projected 

interval was trimmed down to the boundary of the rearrangement.  

 

Having projected human TSS into the mouse genome we asked if the projected TSS overlapped 

an observed TSS in mouse. The reciprocal was also done for mouse TSS projected into human. 

119,979 human TSS overlapped with 105,378 mouse TSS when projected through genomic 

alignments. This discrepancy in numbers is principally due to multiple human TSS projecting 

into a single broader mouse TSS (Extended Data Fig. 4), an expected consequence of the DPI 

clustering approach being applied to more human than mouse libraries. To directly compare the 

annotation of human and mouse TSS we defined projected super-clusters where TSS and cross-

species projected TSS within 20 nucleotides of each other and on the same strand in either in the 

human or the mouse genome. The resulting 119,216 projected super-clusters comprise 168,206 

human and 156,612 mouse DPI defined TSS. Note that these numbers are greater than the 

projected overlaps as DPI TSS are clearly clustered and accordingly a 20 nucleotide proximity 

constraint was included the projected super-clustering. Mouse annotation of the projected super-

cluster took the most functional annotation (e.g. protein-coding > known-transcript > 

Unannotated) of the contributing mouse TSS and the human annotation was similarly the most 

functional of any contributing human TSS. 

 

14. Pathway enrichment analysis 

Canonical pathways 

Canonical pathway gene sets were compiled from Reactome66, Wikipathways67 and KEGG68. 

For the major signaling pathways, the transcriptionally-regulated genes (downstream targets) 

were obtained from Netpath69. 

 

Combined, the canonical pathways and downstream targets totaled 489 human gene sets. The 

corresponding M. musculus gene sets were inferred by homology using the HomoloGene 

database
70
. The gene membership of these sets is described in Supplementary Table 15. 

 

Co-expression cluster pathway enrichment analysis 

Enrichment for each of the 489 pathways and gene sets described above was performed for each 

co-expression cluster. Given that each co-expression cluster has n genes, a pathway or gene set 

of interest has m genes, and assuming there are a total of N genes on the genome, the probability 

of having an overlap X of exactly k genes between a co-expression cluster and a pathway of 
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interest by random chance is given by the hypergeometric probability: 
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An enrichment P value, i.e. the probability of obtaining the observed overlap result or more 

extreme, was obtained by summing these probabilities from k to n. Since enrichment for each co-

expression cluster was performed 489 times for each separate pathway, the P values were also 

then adjusted by the Benjamini-Hochberg method for multiple comparisons
33
 (ee take N = 

19044). All analyses were performed using R
71
 version 2.15.0. Entrez gene IDs were used 

exclusively for enrichment analysis. Gene identifier mapping was performed wherever necessary 

using the org.Hs.eg.db
72
 and org.Mm.eg.db

72
 BioConductor R packages for human and mouse 

analyses respectively. Significant pathway enrichments found are summarized in 

Supplementary Table 16. 

 

15. Comparison of peaks to H3K4me3, H3K9ac, H3K27ac and RNA-seq from ENCODE 

First exons of transcript models based on GENCODE (version 14) annotation and de novo 

sample specific transcript models were identified for each of the GM12878, HepG2 and K562 

cell lines. Both terminal exons were considered for those transcript models where strand 

assignment was not defined. ENCODE alignments of deep RNA-seq from whole cell poly-A 

plus and poly-A minus were obtained from the UCSC ENCODE browser 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/ wgEncodeCshlLongRnaSeq/) 

and from these, expression levels calculated for the identified first exons using coverageBed73 

with the “split” option to give exon specific reads per kilobase exon per million reads (RPKM). 

Exons were classed as expressed if RPKM > 0. 

 

Histone modification data for H3K4me3, H3K9ac and H3K27ac was obtained from GEO 

accession GSE26386
74
. Reads were mapped to the hg19 reference genome using Bowtie

61
 

(version 0.12.8) retaining only unique matches. Peaks were called separately for both replicates 

of each dataset using MACS
75
 (version 14). The union of peaks identified in both replicates was 

considered the peak interval for each histone modification. Histone peaks were considered to be 

RNA-seq supported if a transcript model terminal exon supported by RNA-seq reads in the 

relevant cell type was located within 50 nt of the histone peak interval. In the case of multiple 

exons being associated with a given peak, the highest associated RPMK was used. The 

H3K4me3 peaks with transcript model and RNA-seq support were considered candidate active 

promoters. 

 

To provide a genomic null expectation for annotations and conservation, TSS locations were 

randomly shuffled over the entire reference genome but excluding the ENCODE DAC 

Blacklisted Regions. The subset of clusters being analysed were shuffled 100 times and median 

overlaps/annotations were reported to provide background rates.
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Supplementary Notes 

Supplementary Note 1: Access to the FANTOM5 results 

In order to facilitate access to the FANTOM5 CAGE data set and its analysis results, we set up 

the following interfaces: (i) ZENBU76, a genome browser which incorporates an expression 

summary linked to a genomic view, (ii) SSTAR (Semantic catalogue of, samples, transcription 

initiations, and regulations, Shimoji et al. in prep) which enables us to explore the profiled 

samples, identified CAGE peaks, and regulatory information (iii) BioMart
77
 which enables us to 

export CAGE peak information via a widely used interface, (iv) a collection of (raw and 

processed) data files which enable us to download a bunch of data for subsequent analysis, (v) 

promoter slider to select CAGE peaks showing a specified expression pattern, and (vi) 

nanopublication for interoperable data exchange.    
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(i) ZENBU 

The ZENBU genome browser system was developed for the FANTOM5 project to enable the 

interactive exploration of the deep FANTOM5 data sets. ZENBU can perform data processing 

manipulations to allow the same loaded data to be visualized in many different ways.  

 
Figure S10: ZENBU view of FANTOM5 data. In this view we have the 988 FANTOM5 CAGE CTSS signal 

experiments dynamically merged into a single track and displayed along side gene annotation tracks and FANTOM5 

promoter annotations for human and a liftover from mouse. The FANTOM5 CTSS expression is dynamically 

collated by ZENBU into the FANTOM5 promoters both for human (DPI robust, Lassmann classifier robust). On the 

gene MAPK11 (MAP kinase 11) we see two distinct promoter with tissue and cell specific expression difference. In 

ZENBU one can click or select objects in tracks and the linked expression facet view will update to show the 

underlying expression. We see on this gene that promoter p1@MAPK11 shows stronger expression in endothelial 

derived cells, while p3@MAPK11 shows stronger expression in smooth muscle, neuronal tissues, and epithelial 

derived cells. 
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(ii) SSTAR (Semantic catalogue of, samples, transcription initiations, and regulations) 

SSTAR allows exploration and searches through the samples, transcriptional initiation regions, 

motifs and regulation events in the FANTOM5 collection.  
 

Figure S11: Example of a sample entry in SSTAR. The first box contains the ranked list of top Transcription 

factors identified in FANTOM5. 

 
 

Figure S12: Sample specific motifs in SSTAR 
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Figure S13: SSTAR summarises the co-expression groups that are specifically active in this sample 

 
 

Figure S14: Detailed information stored in SSTAR on the sample and the sample ontology terms associated 

with it. 
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(iii) BioMart 

BioMart allows users to search our CAGE dataset for human and mouse through a widely used 

interface, which gives the advantage to select parameters and filters in order to retrieve the 

portion of the dataset that meets the search criteria instead of downloading the whole dataset.  
 

 (iv) Data file archive 

A main data archive contains the bulk of all primary and contributing analysis data files available 

for download. 

 

(v) FANTOM5 Table Extraction Tool (TET) 

The FANTOM5 expression data is primarily distributed in compressed tab-separated-value 

(TSV) file format, each file consisting of the full set of CAGE peaks (184,827 rows in human 

and 116,277 rows in mouse) and expression values over samples (975 columns in human and 

399 columns in mouse). In order to assist in the data extraction process we have created the 

FANTOM5 Table Extract Tool (TET). TET is intended to be a simplified way of extracting 

relevant sections from a curated set of FANTOM5 data tables.Using TET a user will select one of 

the FANTOM5 data sets, select the columns they wish to extract (i.e. samples), then specify a set 

of rows (i.e. cage peaks) using a regular expression search pattern, and finally view or download 

the resulting subset.  
 

Figure S15: Selecting columns and rows in the FANTOM5 phase1 dataset using TET 

 
 

Figure S16: Example results returned by TET 
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(v) Promoter Slider 

This enables us to set expression constraints by moving the sliders below, for primary cells 

and/or tissues, and export the CAGE peaks fitting to the specification. 

 

(vi) Nanopublications 

FANTOM5 CAGE clusters have been exposed using an interoperable exchange publication 

format called nanopublications
78,79

. A nanopublication is a schema built on top of existing 

semantic technology that defines (i) a single scientific assertion and (ii) provenance metadata 

about the assertion such as methods used to create the data and personal and institutional 

attribution. Nanopublications allow individual assertions and their provenance to be exposed as 

stand-alone, machine-readable publications.  

 

The statements composing the nanopublication are serialized using the Resource Description 

Framework (RDF) such that all the entities are identified using resolvable Uniform Resource 

Identifiers (URIs). URIs ensure machine readability, data interoperability and permit automated 

search and reasoning. URIs for entities composing the Assertion and Provenance can be obtained 

from existing ontologies or via stand alone links created by the authors. Detailed specifications 

and recommendations for nanopublications are given at nanopub.org. 

 

The primary challenges in exposing FANTOM5 data using nanopublications was to create a data 

model that (i) clarified the actual observations (TPM measurements) from the interpretations 

(scientific assertions about TSSs), (ii) mark-up this distinction in as unambiguous way as 

possible, and (iii) allow genomic annotations to be automatically comparable across different 

genome assemblies. Other considerations include economization of memory usage, time-efficient 

querying, and avoidance of logical inconsistencies.   

 

In the conversion of raw CAGE datasets to nanopublications we first used the Vocabulary of 

Interlinked Datasets (VoID) to create a 'nanopublication compliant' RDF description of the data. 

In this way we make each entry in the dataset (e.g. data row or sample value) referenceable, 

which in turn makes it possible to specify that a particular assertion was derived from a specific 

row of the original dataset. To write nanopublications from the VoID dataset we then used 

various ontologies for representing assertions and provenance as semantic triples. 

 

When attempting to describe genomic regions, we first investigated numerous candidate 

ontologies but came to the conclusion that this work is lacking for FANTOM5 purposes. Hence, 

we decided to develop our own ontology - Reference Sequence Ontology (RSO) to fill the gap. 

We want RSO to accommodate the basic CAGE region description as well as scenarios such as:   

-- Allowing a single annotation be mapped onto different reference assemblies, thus providing 

the mechanism to compare data between FANTOM4 and FANTOM5. 

-- Accommodating the most common genomic annotations, thus allowing FANTOM5 data to be 

cross-queried with other datasets. 

 

As a result, we also developed a series of ontologies that are used alongside RSO to describe 

FANTOM5 data and the nanopubication provenance. You can access these ontologies at: 

http://rdf.biosemantics.org/ontologies/referencesequence 

http://rdf.biosemantics.org/ontologies/genomecomponents 
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http://rdf.biosemantics.org/data/genomes/humangenome 

http://rdf.biosemantic.org/data/genomeassemblies/hg19 

See figures below for ontology dependencies. 
 

Figure S17: Ontologies for FANTOM5 Assertion data. 

 
Figure S18: Ontologies for FANTOM5 provenance metadata. 

 
From the VoID descriptions, we can expose three types of nanopublications yielding essential 

information from the FANTOM5 data. Type I nanopublications associate robust CAGE Clusters 

with genome locations. We expose 184,827 Type I nanopublications at 

http://rdf.biosemantics.org/ where the front page has URLs linked to FANTOM5 examples.  

 

On the front page there is also query interface under the “Query” tab. This interface allows the 

user to query cage clusters by region, and show results to UCSC genome browser. From the 
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genome browser the user can click on an individual region, and in the description page for that 

region the item links back to the nanopublication under the "Outside Link". 

 

Forthcoming Type II nanopublications associate CAGE clusters with genes, while Type III 

nanopublications will associate CAGE clusters with sample type. Detailed descriptions of the 

data models for these nanopublication assertions, and the provenance metadata can be found at 

examples pages nanopub.org 

 

Taken together, these nanopublications expose FANTOM5 observational data (CAGE clusters) 

and the biological interpretations (transcriptional start sites in biological samples) in a machine-

readable and interoperable form, such that these data can also be integrated with other 

heterogeneous data sources such as those from the ENCODE Consortium 

(http://genome.ucsc.edu/ENCODE/) or the Leiden Open Variation Database 

(http://www.lovd.nl/2.0/). 
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Supplementary Note 2: Support of CAGE peaks as likely TSS by independent datasets 

The robust peaks were strongly-supported by 5’ ESTs and cDNAs. 70% of human and 79% of 

mouse robust peaks were within 500 bases of a known 5’ end compared to only 6.7% of a 

randomly-chosen data set of comparable size. The fraction of supported peaks depended on the 

level of prior analysis by the community. For instance, only 68% of the peaks in CD14+ 

monocytes were within 500 bases of a known 5’ end compared to 97% and 99.9% of the peaks in 

HeLa and mammary fibroblasts respectively. This reflects the historical focus on sampling ESTs 

from these easily-accessible cell types. The large majority of libraries (89%), had > 95% of their 

peaks supported (see Supplementary table 1).  

A subset of samples could be compared to alternative genome-wide datasets generated by the 

ENCODE consortium
19
 in matching cells. For HepG2, GM12878 and K562 cell lines we found 

86%, 87% and 94% of peaks were within 50 bp of the promoter-specific histone mark 

H3K4me3
80,81

 (Fig. S16).  
 

Figure S19: The H3K4me3 promoter associated histone mark is found at the majority of robust peaks. Robust 

CAGE peaks were annotated by their proximity (overlapping or within 50 nt) to a range of promoter associated 

measures. For each of the histone marks we also considered whether there was RNA-seq based evidence for 

transcription initiation in the form of RNA-seq reads supporting Gencode annotated first exons or de novo RNA-seq 

based transcript models. Annotation was applied progressively: those not annotated by H3K4me3+RNA-seq, were 

considered for H3K4me3, those remaining unannotated considered for H3K9ac+RNA-seq and so on through the 

hierachy of annotations listed in the legend. Columns labelled as "Neg." show equivalent annotation for randomly 

chosen TSS positions. The left panel shows robust peaks at previously annotated TSS and the right panel peaks that 

have not been previously annotated as TSS. Numbers above the histograms show the count of residual peaks not 

supported by any of the annotation categories. 

             
Compared to computationally predicted genome segmentations based upon ENCODE chromatin 

marks20,74, robust peaks were enriched in both ‘promoter’ and ‘enhancer’-like segments (Fig. 

S17c). This agrees with previous reports on transcription from enhancer regions82,83 and 

permitted mapping of cell type-specific activity of mammalian enhancers in our companion 

manuscript
84
.  
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Figure S20: TSS classifier performance metrics and overlap with ENCODE genomic segmentation. a, ROC 

curve showing the agreement of TSS prediction with known human promoter regions. As the standard of truth we 

used DPI clusters within 100bp of known models. b, Distribution of robust and permissiveDPI clusters' TSS 

classifier score across genomic segments transcriptional categories. Segmentation of the genome into transcriptional 

features was performed hierarchically using GencodeV16 transcript proximal start sites, exon and intron defined 

regions (ordered as 1/ transcripts' start site positions; 2/ 500bp proximal promoter regions; 3/ first and 4/ following 

exons, 5/ first and 6/ following introns; 7/ 1kb upstream regions; and finally 8/ regions within transcripts boundaries 

but on their opposite strand). Regions not covered are termed "intergenic". Segments were further sub-categorized 

based on Gencode transcripts' biotype grouped into the following broader categories : "protein-coding"; "non-

coding" transcripts; "processed transcript" (kept as an independent non-coding category since it comprises a large 

fraction of genodeV16 transcriptome); "pseudogenes"; all other biotypes were grouped into "other (biotype-

associated) RNAs". The boxplot was computed and drawn using R ggplot2. For each box of the boxplot, the middle 

line represents the average TSS classifier score of DPI clusters localized within a particular category, the box 

boundaries represent the first and last quartiles. Outliers were not plotted to preserve the clarity and simplicity of the 

figure. The red and blue lines emphasize the respective weakTSS (0.14) and strongTSS (0.228) score thresholds 

selected on the basis of the ROC curves. This figure highlights the robustness of our TSS classifier across a wide 

range of genomic contexts (pseudogene-encoding, protein-coding and non-coding transcripts, as well as, known 

TSS, their surrounding, intronic and exonic sequences) and provides an overview of the relative stringency of the 

weakTSS and strongTSS score thresholds. c,  Comparison of FANTOM5 peaks with ENCODE Chromatin State 

Segmentation in 4 cell lines. Datasets used are all permissive (1048124), all robust (184827), all annotated (294765), 

all P1 annotated (39454) and all TSS classified (217572) DPIs. In each cell line the TSS classified set overlaps 50% 

or more with promoter annotated segments. 

         
The peaks were also compared to the broader collection of DNase I hypersensitive site (DHS) 

datasets generated by the ENCODE consortium48 (Fig. S18).  
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Figure S21. CAGE peak support by proximal DNase I hypersensitive sites. a, The closest distance between the 

midpoint of any ENCODE DNase I hypersensitive site (DHS) (Jan 2011 integration data, FDR 1% peaks) and the 

CAGE summit of each expressed robust CAGE peaks in matching samples between ENCODE and FANTOM were 

calculated. For each CAGE replicate, the cumulative fraction of expressed CAGE peaks supported by DHSs were 

calculated. These cumulative fractions were then averaged between replicates. This analysis was performed for 

robust CAGE peaks, robust CAGE peaks within 500bp of known gene 5' ends (robust, known), and robust CAGE 

peaks distal to 5' ends of known genes (robust, novel). The support for novel peaks predicted as TSSs by the TSS 

classifier (robust, novel, TSS) was also calculated. The same analysis was repeated and averaged for each sample ten 

times for each replicate on random genomic regions (same number as the number of expressed robust CAGE peaks 
in that CAGE replicate), excluding regions with assembly gaps (UCSC gap track) and ENCODE blacklisted regions 

(wgEncodeDacMapability- ConsensusExcludable). The horizontal axes show the distance between CAGE peak 

summits and DHS midpoints. The vertical axes give the average cumulative fraction of CAGE peaks with DHS 

support. Vertical grey lines depict CAGE-DHS distances of 250bp and 500bp. b, as in a except showing cumulative 

fraction of robust CAGE peaks (vertical axis) expressed in any CAGE library supported by proximal DNase I 

hypersensitive sites (DHSs) from any ENCODE sample (Jan 2011 integration data, FDR 1% peaks). 
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For matching CAGE and DHS libraries from HeLa-S3, 97% of the CAGE robust peaks 

corresponding to known 5’ ends and 58% of the novel peaks were within 500bases of a DHS 

peak. Similarly, for matching CD14+ monocyte libraries 96% of the known and 80% of the 

novel peaks were supported. Less than 7% of a set of random regions sampled from the human 

genome were near a DHS peak in these cell types. The use of a sequence-based supervised 

classifier to discriminate likely TSS from post-transcriptionally generated 5’ ends 

(Supplementary Methods, Fig. S17), further improved the DHS validation rates of novel peaks 

in HeLa from 58% to 93% and in CD14+ monocytes from 80% to 96%, respectively. We 

conclude that the majority of the robust peaks identified (~93%) are supported by other data. 

Given the high level of independent validation of TSS in cell types used within ENCODE, the 

large majority of novel TSS discovered in this project are also likely to be genuine TSS, 

discovered as a consequence of the comprehensive profiling of cells that have not previously 

been studied.  

 

It is challenging to rigorously assess the limits of detection of CAGE, as it requires a fully 

comprehensive set of active TSS with perfect accuracy for every sample. We therefore focused 

on the set of well-supported candidate promoter regions in the extensively studied cell types 

GM12878, HepG2 and K562. We required that candidate promoters had the H3K4me3 promoter 

mark and were additionally supported by either RNA-seq support for GENCODE annotated 

TSS, or TSS defined by de novo RNA-seq derived transcript models. Even though RNA-seq and 

ChIP-seq techniques do not provide definitive identification of genuine 5' ends we found CAGE 

detection exceeded 90% for the highly-expressed candidate promoters and decayed as expected 

with decreasing expression levels (Fig. S19).  

  
Figure S22. Independently identified promoter regions identified by robust CAGE tag peaks. For each cell-

type shown, a set of candidate active promoter regions was identified that was supported by the H3K4me4 promoter 

associated histone mark and also by RNA-seq based support for a, GENCODE annotated TSS sites only or b, a TSS 

defined by either a de novo RNA-seq based transcript models or GENCODE. Grey histograms show the frequency 

distribution of the candidate active promoters relative to the RNA-seq based estimate of expression level, given as 

the log of reads per 1,000 nucleotides of transcript, per million RNA-seq reads (RPKM). Red curves show the 

fraction of those candidate active promoters supported by a robust CAGE tag cluster within 50 nt. The fraction 

support is calculated in bins of 1,000 candidate active promoters (step-length=1). NA on the x-axis denotes 

candidate promoter regions for which there were no supporting RNA-seq reads. Solid blue line is 100% robust 

CAGE tag support, dashed blue line is 90%. 
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Supplementary Note 3: Human genes absent from the collection 

Known genes were downloaded from HGNC. Withdrawn symbols and the following classes 

were excluded from analysis (endogenous retrovirus, fragile site, immunoglobulin gene, 

immunoglobulin pseudogene, phenotype only, pseudogene, region, RNA cluster, RNA, micro, 

RNA, pseudogene, RNA, ribosomal, RNA, small cytoplasmic, RNA, small misc, RNA, small 

misc, RNA, small nuclear, RNA, small nucleolar, RNA, transfer, T cell receptor gene, T cell 

receptor pseudogene, transposable element, virus integration site, protocadherin, , complex locus 

and unknown).  

 

For HGNC class ‘gene with protein product’ 97% [17819(17784)] of genes were observed at the 

permissive peak threshold leaving 3% [1225(1123)] that we did not detect. 91% [17268] were 

detected at the robust threshold. The numbers in round brackets indicate the subset where an 

accession supporting an observed transcript has been provided. A check of these lists reveals 

many cell-type specific genes that would not be expected to be detected in the human collection. 

This includes 14 interferons known to be induced upon viral challenge, opsins expressed in 

cones of the eye, 383 olfactory receptors expressed in olfactory epithelium. In addition 

duplicated genes such as SMN1 an SMN2 are filtered out by our requirement of mapping quality 

(a Q20 alignment). For these duplicated regions we are able to comment on expression patterns 

(see unfiltered BAM track in ZENBU browser), but are unable to say which copies are 

contributing to the observed pattern. We estimate for the 1225 coding genes not covered by a 

permissive DPI 50% correspond to genes that are expressed in rare cell types not-covered in the 

collection, 40% correspond to duplicated region filtering and 10% correspond to truncated 

transcript models (i.e. the gene is detected but the promoter is further than 500bases from the 

transcript model 5’). 

 

Protein coding genes not detected by a permissive DPI peak 
(ABCC6, ACCSL, ACPT, ACSM4, ACTRT3, AGAP10, AGAP4, AGAP7, AGAP8, AGAP9, AGBL1, ALG1L, AMY1A, AMY1B, 

AMY1C, ANHX, ANKRD20A1, ANKRD20A2, ANKRD20A3, ANKRD20A4, ANKRD60, ANXA8L1, AP5B1, APOBEC3A_B, 

APOL5, ARHGEF28, ARHGEF35, ARL14EPL, ARL17A, ARL17B, ARSH, ASCL4, ASCL5, ASIP, ASTL, ATP5L2, ATXN8, 

BLACE, BLID, BMP15, BMP2KL, BOLA2B, BPIFB3, BPY2, BPY2B, BPY2C, BTBD18, BTN1A1, BTNL10, C10orf113, 

C10orf85, C11orf40, C11orf44, C11orf89, C12orf55, C12orf71, C13orf35, C13orf45, C14orf177, C14orf183, C16orf3, 

C16orf47, C17orf112, C17orf77, C1orf134, C1orf137, C1orf147, C1orf233, C1QTNF9B, C20orf78, C2orf16, C2orf27A, 

C2orf27B, C2orf78, C2orf91, C3orf27, C3orf35, C3orf36, C3orf79, C4A, C4B, C4orf50, C5orf20, C7orf29, C7orf65, C7orf66, 

C8orf17, C8orf49, C8orf87, C9orf38, C9orf53, C9orf62, C9orf92, CASP16, CBWD1, CBWD6, CCDC177, CCL4L1, CCL4L2, 

CCT8L2, CDCP2, CDKL4, CDRT15L2, CDY1, CDY1B, CDY2A, CDY2B, CEACAM16, CELA1, CFC1, CFHR2, CGB2, CHP1, 

CHRNA10, CIB3, CKMT1A, CKMT1B, CLDN24, CLDN25, CLEC18A, CLLU1, CLLU1OS, CLRN2, CMC4, CNGA2, CNTNAP3, 

CPQ, CSN2, CSTL1, CT45A1, CT45A2, CT45A3, CT45A4, CT45A6, CT47A1, CT47A10, CT47A11, CT47A12, CT47A2, CT47A3, 

CT47A4, CT47A5, CT47A6, CT47A7, CT47A8, CT47A9, CT47B1, CTAG1A, CTAG1B, CTAG2, CTAGE4, CTAGE9, CXorf30, 

CXorf31, CXorf59, CXorf68, CYP11B2, DAOA, DAZ1, DAZ2, DAZ3, DAZ4, DDT, DEFB103A, DEFB104A, DEFB104B, 

DEFB105A, DEFB105B, DEFB106A, DEFB106B, DEFB107A, DEFB107B, DEFB108B, DEFB112, DEFB113, DEFB115, 

DEFB130, DEFB133, DEFB136, DNAH10OS, DPRX, DSPP, DUX4, DUX4L2, DUX4L4, DUX4L5, DUX4L6, DUX4L7, DUXA, 

DYTN, EBLN1, EPPIN, ERAS, ERICH2, FABP12, FAM153A, FAM155B, FAM188B2, FAM197Y1, FAM203A, FAM203B, 

FAM21B, FAM227A, FAM228B, FAM22A, FAM22D, FAM22F, FAM22G, FAM27A, FAM27E3, FAM27L, FAM48B2, FAM72A, 

FAM72B, FAM72D, FAM83E, FAM86B1, FAM86B2, FAM87A, FAM90A1, FBXW10, FCGR2B, FCGR2C, FER1L6, FFAR1, 

FGF16, FOLR4, FOXD4, FOXD4L1, FOXD4L2, FOXD4L3, FOXD4L4, FOXD4L5, FOXD4L6, FRG2, FRG2B, FRMPD3, 

FSBP, GAGE1, GAGE10, GAGE12B, GAGE12C, GAGE12D, GAGE12E, GAGE12F, GAGE12G, GAGE12H, GAGE12I, 

GAGE12J, GAGE13, GAGE2A, GAGE2B, GAGE2C, GAGE2D, GAGE2E, GAGE3, GAGE4, GAGE5, GAGE6, GAGE7, 

GATSL1, GCNT6, GCNT7, GFRA4, GGTLC2, GGTLC3, GIMD1, GJA10, GLT6D1, GOLGA6A, GOLGA6B, GOLGA6C, 

GOLGA6D, GOLGA6L1, GOLGA6L10, GOLGA6L2, GOLGA6L4, GOLGA6L6, GOLGA6L9, GOLGA8H, GOLGA8J, 

GOLGA8K, GOLGA8M, GOLGA8N, GOLGA8O, GOLGA8R, GPAT2, GPR142, GPR148, GPR151, GPR152, GPR42, GPR89C, 

GPX6, GRAP, GRXCR2, GSTT2B, GTF2H2, GTF2IRD2, H2AFB1, H2AFB2, H2AFB3, H2BFWT, HELZ2, HEPN1, HERC2, 

HHLA1, HIGD1C, HIST1H4G, HLA-DRB3, HNRNPCL1, HSFX2, HSFY1, HSFY2, HSP90AA2, HTR1F, HTR3D, HYAL4, IFNA1, 

IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, IFNA21, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNE, IFNW1, IGH@, IGK@, 
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IGL@, IL22, IL25, IL28A, IL28B, IL37, KCNA10, KCNK18, KDM4E, KIAA1210, KIR2DL2, KIR2DL5A, KIR2DL5B, KIR2DS3, 

KIR2DS5, KIR3DL1, KIR3DL3, KIR3DS1, KLHL15, KLRC4, KPNA7, KRTAP10-11, KRTAP10-12, KRTAP10-2, KRTAP10-6, 

KRTAP12-1, KRTAP12-2, KRTAP12-4, KRTAP13-3, KRTAP13-4, KRTAP1-4, KRTAP15-1, KRTAP19-2, KRTAP19-4, KRTAP19-

6, KRTAP19-7, KRTAP19-8, KRTAP20-1, KRTAP20-3, KRTAP2-1, KRTAP21-1, KRTAP21-3, KRTAP2-2, KRTAP22-1, 

KRTAP22-2, KRTAP2-3, KRTAP23-1, KRTAP25-1, KRTAP27-1, KRTAP29-1, KRTAP4-7, KRTAP4-9, KRTAP5-1, KRTAP5-10, 

KRTAP5-11, KRTAP5-2, KRTAP5-3, KRTAP5-5, KRTAP5-6, KRTAP5-7, KRTAP5-8, KRTAP5-9, KRTAP6-2, KRTAP6-3, 

KRTAP9-1, KRTAP9-2, KRTAP9-4, KRTAP9-6, LACTBL1, LALBA, LCE1B, LCE2B, LCE2C, LCE3A, LCE3B, LCE4A, LEUTX, 

LGALS9B, LINC00692, LIPK, LRCOL1, LRIT3, LRRC18, LRRC37A, LRRC37A2, LRRC3C, LRRIQ4, LYG2, LYPD8, 

MAGEA2B, MAGEA3, MAGEA9B, MAGEB5, MAGEC3, MAS1, MAS1L, MBD3L1, MBD3L2, MBD3L3, MBD3L4, MBD3L5, 

MC3R, MC5R, MCIN, MICALCL, MILR1, MMP21, MOS, MPC1L, MRC1, MRGPRD, MRGPRG, MRGPRX4, MS4A18, MST1L, 

MT-ATP6, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, 

MTRNR2L1, MYL10, MYO1H, NAIP, NANOGNB, NBPF11, NBPF14, NBPF16, NBPF20, NBPF24, NBPF4, NBPF5, NBPF6, 

NBPF7, NCBP2L, NCF1, NCR3LG1, NEU2, NKX1-1, NLRP13, NLRP5, NLRP8, NLRP9, NOBOX, NOMO2, NPIP, NPIPL2, 

NRTN, NTF4, NTN5, NUPR1L, NXF2, NXF2B, NXF5, OBP2A, OBP2B, OCM, OCM2, OFCC1, OMP, OPN1MW, OPN1MW2, 

OR10A2, OR10A3, OR10A4, OR10A5, OR10A6, OR10A7, OR10AD1, OR10AG1, OR10C1, OR10D3, OR10G2, OR10G3, 

OR10G4, OR10G7, OR10G8, OR10G9, OR10H1, OR10H2, OR10H3, OR10H4, OR10H5, OR10J1, OR10J3, OR10J4, OR10J5, 

OR10K1, OR10K2, OR10P1, OR10Q1, OR10R2, OR10T2, OR10V1, OR10W1, OR10X1, OR10Z1, OR11G2, OR11H1, OR11H12, 

OR11H2, OR11H4, OR11H6, OR11H7, OR11L1, OR12D2, OR12D3, OR13A1, OR13C2, OR13C3, OR13C4, OR13C5, OR13C8, 

OR13C9, OR13D1, OR13F1, OR13G1, OR13H1, OR13J1, OR14A16, OR14A2, OR14C36, OR14I1, OR14J1, OR14K1, OR1A1, 

OR1A2, OR1B1, OR1C1, OR1D2, OR1D4, OR1D5, OR1E1, OR1E2, OR1E3, OR1F1, OR1F12, OR1G1, OR1I1, OR1J1, OR1J4, 

OR1K1, OR1L1, OR1L3, OR1L4, OR1L6, OR1L8, OR1M1, OR1N1, OR1N2, OR1P1, OR1Q1, OR1S1, OR1S2, OR2A1, OR2A12, 

OR2A14, OR2A2, OR2A25, OR2A4, OR2A42, OR2A5, OR2A7, OR2AE1, OR2AG1, OR2AG2, OR2AK2, OR2AP1, OR2AT4, 

OR2B11, OR2B2, OR2B3, OR2B6, OR2C1, OR2C3, OR2D2, OR2D3, OR2F1, OR2F2, OR2G2, OR2G3, OR2G6, OR2H2, 

OR2J1, OR2J2, OR2J3, OR2K2, OR2L2, OR2L3, OR2L5, OR2L8, OR2M2, OR2M4, OR2M5, OR2M7, OR2S2, OR2T1, OR2T10, 

OR2T11, OR2T12, OR2T2, OR2T27, OR2T29, OR2T3, OR2T33, OR2T34, OR2T35, OR2T4, OR2T5, OR2T6, OR2T7, OR2T8, 

OR2V1, OR2V2, OR2W1, OR2W3, OR2Y1, OR2Z1, OR3A1, OR3A2, OR3A3, OR4A15, OR4A16, OR4A47, OR4A5, OR4B1, 

OR4C11, OR4C12, OR4C13, OR4C15, OR4C16, OR4C3, OR4C45, OR4C46, OR4D1, OR4D10, OR4D11, OR4D2, OR4D5, 

OR4D6, OR4D9, OR4E1, OR4E2, OR4F15, OR4F16, OR4F17, OR4F21, OR4F29, OR4F3, OR4F4, OR4F5, OR4F6, OR4K1, 

OR4K13, OR4K14, OR4K15, OR4K17, OR4K2, OR4K3, OR4K5, OR4L1, OR4M1, OR4M2, OR4N2, OR4N5, OR4P4, OR4Q2, 

OR4Q3, OR4S1, OR4S2, OR4X1, OR4X2, OR51A2, OR51A4, OR51A7, OR51B2, OR51B4, OR51B6, OR51D1, OR51F1, 

OR51F2, OR51G1, OR51G2, OR51I1, OR51I2, OR51J1, OR51L1, OR51M1, OR51Q1, OR51S1, OR51T1, OR51V1, OR52A1, 

OR52A5, OR52B2, OR52B4, OR52B6, OR52D1, OR52E1, OR52E2, OR52E4, OR52E5, OR52E6, OR52E8, OR52H1, OR52I1, 

OR52I2, OR52J3, OR52K1, OR52K2, OR52L1, OR52M1, OR52N1, OR52N2, OR52N4, OR52N5, OR52R1, OR52W1, OR52Z1, 

OR56A1, OR56A3, OR56A4, OR56A5, OR56B4, OR5A1, OR5A2, OR5AC1, OR5AC2, OR5AK2, OR5AL1, OR5AN1, OR5AP2, 

OR5AR1, OR5AS1, OR5AU1, OR5B12, OR5B17, OR5B2, OR5B21, OR5B3, OR5D13, OR5D14, OR5D16, OR5D18, OR5F1, 

OR5G3, OR5H1, OR5H14, OR5H15, OR5H2, OR5H6, OR5I1, OR5J2, OR5K1, OR5K2, OR5K3, OR5K4, OR5L1, OR5L2, 

OR5M1, OR5M10, OR5M11, OR5M3, OR5M8, OR5M9, OR5P2, OR5P3, OR5R1, OR5T1, OR5T2, OR5T3, OR5V1, OR5W2, 

OR6A2, OR6B1, OR6B2, OR6B3, OR6C1, OR6C2, OR6C3, OR6C4, OR6C6, OR6C65, OR6C68, OR6C70, OR6C74, OR6C75, 

OR6C76, OR6F1, OR6J1, OR6K2, OR6K3, OR6K6, OR6M1, OR6N1, OR6N2, OR6P1, OR6Q1, OR6S1, OR6T1, OR6V1, 

OR6X1, OR6Y1, OR7A10, OR7A17, OR7C2, OR7D2, OR7D4, OR7E24, OR7G1, OR7G2, OR7G3, OR8A1, OR8B12, OR8B2, 

OR8B3, OR8B4, OR8B8, OR8D1, OR8D2, OR8D4, OR8G2, OR8G5, OR8H1, OR8H2, OR8H3, OR8I2, OR8J1, OR8J2, OR8J3, 

OR8K1, OR8K3, OR8K5, OR8U1, OR8U8, OR8U9, OR9A2, OR9A4, OR9G1, OR9G4, OR9G9, OR9I1, OR9K2, OR9Q1, 

OR9Q2, ORM2, OTOL1, OVCH1, OVOL3, PABPN1L, PALM3, PBOV1, PCDHA@, PCDHB@, PCDHG@, PET117, PGA4, 

PGAM4, PGLYRP3, PINLYP, PIWIL3, PLA2G10, PLA2G4E, PLEKHG7, PLGLB1, PLGLB2, PNMA6A, PNMA6B, PNMA6C, 

PNMA6D, POLR2J3, POMZP3, POTEE, POTEG, POTEH, POTEI, POTEJ, POTEM, PPIAL4A, PPIAL4B, PPIAL4C, 

PPIAL4D, PPIAL4G, PPIP5K1, PPP5D1, PRAMEF11, PRAMEF12, PRAMEF13, PRAMEF14, PRAMEF15, PRAMEF16, 

PRAMEF17, PRAMEF18, PRAMEF19, PRAMEF20, PRAMEF21, PRAMEF22, PRAMEF23, PRAMEF3, PRAMEF4, 

PRAMEF5, PRAMEF6, PRAMEF7, PRAMEF8, PRAMEF9, PRDM7, PRLH, PROX2, PRR20A, PRR20B, PRR20C, PRR20D, 

PRR20E, PRR21, PRR23C, PRR25, PRSS33, PRSS42, PRSS48, PRY, PRY2, PSPN, PTGES3L, PTPN20A, PTPN20B, PYDC2, 

PYURF, QRICH2, R3HDML, RAB40AL, RAB44, RAB7B, RBMY1A1, RBMY1B, RBMY1D, RBMY1E, RBMY1F, RBMY1J, RD3L, 

REXO1L1, RFPL1, RFPL3, RFPL4A, RGPD1, RGPD8, RHOXF2, RHOXF2B, RIMBP3, RIMBP3B, RIMBP3C, RLN3, 

RNASE10, RNASE8, RSPH10B, RSPH10B2, RTL1, RTP2, S100A7L2, SCGB2B2, SCN10A, SCN11A, SCXA, SCXB, SDIM1, 

SDR42E2, SEC11B, SERF1A, SERF1B, SERPINB12, SIGLEC16, SKOR2, SLC22A25, SLC35G3, SLC35G4, SLC35G5, 

SLC35G6, SLC51A, SLC51B, SLCO1B7, SLFN14, SLX1A, SLX1B, SMIM1, SMIM2, SMIM8, SMN1, SMN2, SMTNL1, SPANXA1, 

SPANXB1, SPANXB2, SPANXE, SPANXF1, SPATA31A1, SPATA31A2, SPATA31A3, SPATA31A4, SPATA31A5, SPATA31A6, 

SPATA31A7, SPATA31B1, SPATA31C2, SPATA31D3, SPATA31D4, SPDYE1, SPDYE2, SPDYE5, SPDYE6, SPINK14, SPINK8, 

SPPL2C, SRGAP2C, SSX10, SSX2, SSX2B, SSX4, SSX4B, SSX8, STAG3L3, STARD6, STH, STRA8, STRC, SULT1A3, SULT1A4, 

SULT1C3, SYNE3, SYT14L, TAAR1, TAAR3, TAAR5, TAAR6, TAAR8, TAAR9, TAL2, TAS1R2, TAS2R1, TAS2R10, TAS2R13, 

TAS2R16, TAS2R19, TAS2R20, TAS2R3, TAS2R30, TAS2R31, TAS2R38, TAS2R39, TAS2R4, TAS2R40, TAS2R41, TAS2R42, 

TAS2R43, TAS2R45, TAS2R46, TAS2R5, TAS2R50, TAS2R60, TAS2R7, TAS2R8, TAS2R9, TBC1D26, TBC1D28, TBC1D29, 

TBC1D3, TBC1D3B, TBC1D3C, TBC1D3F, TBC1D3G, TBC1D3H, TBPL2, TCEB3C, TCEB3CL, TCEB3CL2, TECTA, 

TGFBR3L, TGIF2LY, THEGL, TMEM114, TMEM133, TMEM14E, TMEM178B, TMEM191B, TMEM211, TMEM236, TMEM247, 
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TMEM249, TMEM78, TMEM81, TMPRSS9, TP53TG3, TP53TG3B, TP53TG3C, TPBGL, TPRX1, TPTE2, TRA@, TRABD2B, 

TRB@, TRD@, TRG@, TRIM43, TRIM43B, TRIM49, TRIM49B, TRIM49C, TRIM49L1, TRIM64, TRIM64B, TRIM64C, TRIM73, 

TRIM74, TRIM75, TRPM5, TSPY1, TSPY10, TSPY3, TSTD3, TTC34, TTLL8, UBTFL1, UGT1A, USP17L10, USP17L11, 

USP17L12, USP17L13, USP17L15, USP17L17, USP17L18, USP17L19, USP17L20, USP17L21, USP17L22, USP17L23, 

USP17L24, USP17L25, USP17L26, USP17L27, USP17L28, USP17L29, USP17L30, USP17L5, USP17L8, USP9Y, UTS2R, 

VCX2, VCX3A, VCY, VCY1B, VHLL, VIMP, VN1R2, VN1R3, VN1R4, VN1R5, WASH1, WEE2, WFDC11, XAGE1A, XAGE1B, 

XAGE1C, XAGE1D, XAGE1E, XAGE5, XKRY, XKRY2, ZAR1, ZCCHC23, ZDHHC11B, ZIM3, ZNF587B, ZNF658, ZNF705B, 

ZNF705D, ZNF705G, ZNF728, ZNF735, ZNF80, ZNF806, ZNF888, ZPLD1, ZSCAN4, ZSCAN5B, ZSCAN5C, ZSCAN5D) 

 

For ‘RNA, long non-coding’ 40% [601(443)] were detected by a permissive peak with 60% 

missing [909 (605)]. 24% [359] were detected by a robust peak. The numbers in round brackets 

indicate the subset where an accession supporting an observed transcript has been provided. The 

low fraction of long non-coding RNAs detected compared to protein coding genes could indicate 

their general lower expression levels but also the incomplete nature and lower quality of the 

transcript models available.  

 

Long non-coding genes not detected by a permissive DPI peak 
(A2M-AS1, LRP4-AS1, LRRC2-AS1, LRRC3-AS1, LRRC3DN, LSAMP-AS1, LSAMP-AS2, LZTS1-AS1, MACC1-AS1, MACROD2-

IT1, MAGI1-AS1, MAGI2-AS1, MAGI2-IT1, MANEA-AS1, MAP3K14-AS1, MAPT-AS1, MAPT-IT1, MATN1-AS1, MBNL1-AS1, 

MCCC1-AS1, MDC1-AS1, MED4-AS1, MEG9, MEIS1-AS1, MEIS1-AS2, MEIS1-AS3, MIR381HG, MIR600HG, MIS18A-AS1, 

MKNK1-AS1, MKRN3-AS1, MLIP-IT1, MME-AS1, MMP24-AS1, MORC1-AS1, MORF4L2-AS1, MPRIP-AS1, MTOR-AS1, 

MTUS2-AS1, MTUS2-AS2, MYB-AS1, MYCBP2-AS1, MYCBP2-AS2, MYLK-AS2, MYO16-AS2, N4BP2L2-IT2, NAALADL2-AS1, 

NADKD1-AS1, NAGPA-AS1, NAMA, NAPA-AS1, NARF-OT1, NAV2-AS1, NAV2-IT1, NBEA-AS1, NCBP2-AS1, NCRUPAR, 

NDUFB2-AS1, NEGR1-IT1, NEXN-AS1, NHS-AS1, NICN1-AS1, NKX2-2-AS1, NLGN1-AS1, NOVA1-AS1, NPSR1-AS1, NR2F2-

AS1, NREP-AS1, NRG1-IT1, NRG1-IT2, NRG1-IT3, NRON, NTM-IT1, NTM-IT2, NTM-IT3, NTRK3-AS1, NUCB1-AS1, 

OCIAD1-AS1, OGFR-AS1, OPA1-AS1, OPCML-IT1, OPCML-IT2, OSGEPL1-AS1, OSTM1-AS1, OSTN-AS1, OTX2-AS1, 

OXCT1-AS1, P4HA2-AS1, PACRG-AS1, PARD6G-AS1, PCAT1, PCBP3-OT1, PCDH9-AS1, PCDH9-AS2, PCDH9-AS3, 

PCDH9-AS4, PCED1B-AS1, PCOLCE-AS1, PCYT1B-AS1, PDX1-AS1, PDZK1IP1-AS1, PEG3-AS1, PEX5L-AS1, PGM5-AS1, 

PHEX-AS1, PHKA1-AS1, PHKA2-AS1, PISRT1, PITPNA-AS1, PLCB1-IT1, PLCB2-AS1, PLCH1-AS1, PLSCR5-AS1, POTEH-

AS1, POU4F1-AS1, PPEF1-AS1, PPP2R2B-IT1, PRICKLE2-AS2, PRKAG2-AS1, PRKX-AS1, PRMT5-AS1, PROX1-AS1, 

PROX1-IT1, PRR7-AS1, PSMD6-AS2, PSMG3-AS1, PSORS1C3, PSPC1-AS1, PSPC1-OT1, PTCSC3, PTOV1-AS1, PWRN2, 

PXN-AS1, RAB11B-AS1, RABGAP1L-IT1, RAI1-AS1, RAMP2-AS1, RAPGEF4-AS1, RASA2-IT1, RASA3-IT1, RASAL2-AS1, 

RBM12B-AS2, RBMS3-AS1, RBMS3-AS3, RC3H1-IT1, RERG-AS1, RNA45S1, RNA45S2, RNA45S3, RNA45S4, RNA45S5, 

RNF144A-AS1, RNF157-AS1, RNF185-AS1, RNF216-IT1, RPL34-AS1, RPS6KA2-AS1, RPS6KA2-IT1, RRM1-AS1, RSBN1L-

AS1, RSF1-IT1, RSF1-IT2, SAPCD1-AS1, SATB2-AS1, SBF2-AS1, SCAANT1, SCEL-AS1, SDCBP2-AS1, SEC24B-AS1, SEC62-

AS1, SETD5-AS1, SH3BP5-AS1, SH3RF3-AS1, SHANK2-AS2, SHANK2-AS3, SIDT1-AS1, SIK3-IT1, SIX3-AS1, SLC25A30-AS1, 

SLC26A4-AS1, SLC2A1-AS1, SLC6A1-AS1, SLC7A11-AS1, SLC8A1-AS1, SLC9A9-AS1, SLC9A9-AS2, SLFNL1-AS1, SMAD9-

AS1, SMCR2, SMCR5, SMG6-IT1, SMG7-AS1, SNAI3-AS1, SNAP25-AS1, SNAP47-AS1, SNHG16, SNRK-AS1, SOCS2-AS1, 

SPANXA2-OT1, SPTY2D1-AS1, SRD5A3-AS1, SRGAP2-AS1, SRGAP3-AS1, SRGAP3-AS4, SRRM2-AS1, SSTR5-AS1, ST6GAL2-

IT1, STARD13-AS1, STARD13-AS2, STARD13-IT1, STARD4-AS1, STAU2-AS1, STEAP3-AS1, STK4-AS1, STPG2-AS1, STT3A-

AS1, STXBP5-AS1, SYNE1-AS1, SYNPR-AS1, SZT2-AS1, TAB3-AS2, TAPT1-AS1, TBC1D4-AS1, TBL1XR1-AS1, TBX5-AS1, 

TCEAL3-AS1, TDRG1, TET2-AS1, TGFA-IT1, THAP9-AS1, THOC7-AS1, THRB-AS1, THRB-IT1, TLR8-AS1, TMEM106A-AS1, 

TMEM161B-AS1, TMEM212-IT1, TMEM220-AS1, TMEM254-AS1, TMEM44-AS1, TMEM9B-AS1, TMLHE-AS1, TMPO-AS1, 

TMPRSS4-AS1, TNR-IT1, TOB1-AS1, TP53COR1, TPRG1-AS2, TPT1-AS1, TRAPPC12-AS1, TRHDE-AS1, TRIM31-AS1, 

TRMT2B-AS1, TRPC7-AS1, TRPC7-AS2, TSC22D1-AS1, TSIX, TSPAN9-IT1, TSSC1-IT1, TTC3-AS1, TTLL7-IT1, TTN-AS1, 

TTTY1, TTTY10, TTTY11, TTTY12, TTTY13, TTTY13B, TTTY16, TTTY17A, TTTY17B, TTTY17C, TTTY18, TTTY19, TTTY1B, 

TTTY2, TTTY20, TTTY21, TTTY21B, TTTY22, TTTY23, TTTY23B, TTTY2B, TTTY3, TTTY3B, TTTY4, TTTY4B, TTTY4C, TTTY5, 

TTTY6B, TTTY7, TTTY7B, TTTY8, TTTY8B, TTTY9A, TTTY9B, UBE2E2-AS1, UBE2Q1-AS1, UBOX5-AS1, UCKL1-AS1, UFL1-

AS1, UGDH-AS1, UGGT2-IT1, ULK4-IT1, UPK1A-AS1, UPP2-IT1, USP12-AS1, USP30-AS1, USP46-AS1, VAV3-AS1, VIPR1-

AS1, VPS13A-AS1, VWA8-AS1, VWC2L-IT1, WAC-AS1, WARS2-IT1, WASF3-AS1, WASIR1, WASIR2, WDFY2-AS1, WDFY3-AS1, 

WDR11-AS1, WDR86-AS1, WWC2-AS1, WWC3-AS1, WWTR1-IT1, XIAP-AS1, XIRP2-AS1, XXYLT1-AS1, XXYLT1-AS2, 

YEATS2-AS1, ZBED3-AS1, ZBTB20-AS2, ZBTB20-AS3, ZDHHC20-IT1, ZFAT-AS1, ZFHX4-AS1, ZIC4-AS1, ZMYM2-IT1, 

ZMYM4-AS1, ZNF205-AS1, ZNF32-AS1, ZNF32-AS2, ZNF346-IT1, ZNF582-AS1, ZNF630-AS1, ZNF674-AS1, ZNF790-AS1, 

ZNRF3-AS1, ZNRF3-IT1, ZRANB2-AS2) 

WWW.NATURE.COM/NATURE | 42

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature13182



Supplementary Note 4: Estimates on tissue specific transcripts 

Richness of expression 

To quantify the breadth of expression of the robust CAGE peaks, we calculated a richness 

index85. This index represents the number of different libraries where the CAGE peaks would 

expected to be detected, if all the peaks would contain an arbitrary number of tags, here chosen 

to be 10. To avoid to under-estimate the expression breadth of peaks found in libraries that 

yielded less tags than average, and to obtain normalized expression values that are still round tag 

counts, we down-sampled without replacement each library to a total of one million mapped 

tags, using the rrarefy function of the R vegan package86, discarding the 57 libraries where 
the total count was lower than one million. We also discarded 10,168 peaks that had less than 10 

tags in total across all the libraries after down-sampling, as it is not possible to estimate their 

richness on scales smaller than 10. We then calculated the richness of each CAGE peak with a 

sample size of 10.  
 

Figure S23. The distribution of richness indexes. Shows a peak for high values representing ubiquitously or very 

broadly expressed clusters. The median is 9.2 (vertical grey line), which is outside of the peak, showing that roughly 

half of the clusters are not ubiquitously expressed. 
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Entropy of expression 

As an alternative metric of sample specificity, we calculated Shannon entropy
68
, where smaller 

entropy means a more sample restricted (specific) pattern of expression. Averaged TPM (tags per 

million) values over replicates are used as expression intensities, as follows: -Σ p(r) log2(p(r)), 

where p(r) represent log2(TPM) value in a replicate group R.  

 
Figure S24: Frequencies and distribution of maximum expression according to entropy bins are plotted for 

the human robust peaks with maximum expression > 10TPM. Human Top, Mouse Bottom. 

                                    

                        
These plots clearly show two populations of promoter activities: very restricted expression and 

less specific ones (left panels). The difference in mouse and human distributions is likely to 

reflect that the human collection contains many more states and the mouse collection 

predominantly contains tissue libraries (mixtures of cells). 
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Supplementary Note 5: Inferring key regulatory motifs in cell-type-specific promoters  

The accurate definition of tissue-specific promoters enables the definition of sequence motifs 

that may bind tissue-specific transcription factors. We performed de novo motif discovery in 

genomic sequences in the vicinity of promoters with sample-specific expression to identify 

putative transcription factor binding patterns. Four complementary algorithms were used: 

DMF42, HOMER43, ChIPMunk38, and ScanAll (Dalla et al., manuscript in preparation) 

(Supplementary Methods & Extended Data Figure 5). 8,699 overrepresented motifs were 

identified de novo, including motifs resembling the consensus binding sequences of most known 

regulators. Importantly motifs corresponding to key regulators of cellular state such as HNF 

factors in hepatocytes, PU.1 and AP1 in monocytes, SOX and RFX in testis, and CRX in retina 

were identified in the corresponding cell-type enriched promoters (Extended Data Figure 5b). 

TomTom
51
 comparison of our combined set of de novo motifs with the JASPAR

45
, HOMER

43
, 

SwissRegulon
46
, UniPROBE

47
, HOCOMOCO

39
 and TRANSFAC

49
 motif collections revealed 

that approximately 90% of all known motifs were re-identified de novo (Extended Data Figure 

5c). We also rediscovered motifs similar to 234 of the 289 novel ‘LEXICON’ motifs recently 

identified in ENCODE DNase I footprints
48
, providing independent confirmation of their 

biological relevance (Supplementary Table 11). 1,221 of the 8,699 de novo motifs did not 

resemble known motifs; upon clustering40 this reduced to a set of 169 novel non-redundant 

motifs (see Supplementary Methods). While these motifs were not further functionally 

characterized, the significant correlation between the expression of the CAGE peaks and their 

associated TFBSs in 37 cases and the significant enrichment of gene ontology terms for almost 

all predicted TFBSs for the 169 novel motifs (see Supplemental text and table 12) suggest that 

some of these are recognized by novel transcription factors. Summaries on each of the novel 

motifs are provided online in the SSTAR resource 

[http://fantom.gsc.riken.jp/5/sstar/Browse_Novel_motifs].  
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Supplementary Note 6: Transcription factors absent from the collection 

For the 50 missing human TFs, 15 were from duplicated regions of the genome and 35 were not 

detected. Orthologs for 24 of these were detected in the mouse embryonic development samples 

while the remaining TFs are expressed in early developmental samples missing from both 

species collections.  

The 24 TFs that were not detected in the human collection that were detected in the mouse robust 

cluster set: (ARID3C (neonatal eyeball), ASCL3 (submandibular gland), BHLHA9 (neonatal 

skin), CPXCR1 (testis), DMRT3 (hematopoietic progenitors, hippocampal astrocytes), EVX2 

(Developing forelimb
87
), FIGLA (embryonic ovary and eyeball, neonatal ovary, eyeball, testis), 

HELT (hippocampal neurons, granule cells), HSFY2 (testis), KLF14 (E14-E18 various organs), 

MBD3L1 (testis), OTP (neurons), PRDM12 (embryo and neurons), PRDM9 (various), PROP1 

(embryonic pituitary, down regulated during development), PROX2 (testis), SKOR2 (spinal 

neurons, granule cells), TAL2 (granule cells, macrophages, striatal neurons), TFAP2D (granule 

cells, hippocampal and striatal neurons), TFAP2E (neonatal skin and eyeball), YY2 (neonatal 

testis), ZC3H12B (adult brain regions), ZFP28 (neonatal hippocampus, corpus striatum, eyeball, 

neurons), ZFP92 (corpora quadrigemina, pituitary gland, neurons), ZNF286A (various tissues)). 

These tended to be detected in samples where we did not have a matching human counterpart 

sample. In particular this corresponded to transcription factors expressed in neuronal subsets and 

embryonic or neonatal development. Interestingly four of these were from testis, which is 

represented in the human collection. Due to the cellular complexity of testis it may be that the 

ratio of cell types is different in human and mouse as testis volume scales and hence these 

weakly expressed testis specific genes are not detected in human.  

E.g. MBD3L1 is only expressed in round spermatids
88
 and YY2 in spermatocytes but not sperm 

cells
76
. Perhaps isolated cell types in testis would recover this. 

 

A set of 16 transcriptional regulators with homologs in both human and mouse and with uniquely 

mappable promoter regions were not detected in the robust clusters for either species (ASCL4, 

CDX4, GSC2, MSGN1, NKX1-1, NOBOX, NOTO, OVOL3, SRY, TBPL2, TBX10, UBTFL1, 

ZNF648, ZIM3, ZSCAN4, ZSCAN5B). Checking the literature these factors are expressed in more 

rare samples:  

Early embryogenesis: E.g. CDX4
89
, MSGN1 (paraxial mesoderm

90
) NKX1-1

91
, (SRY testis 

formation
92
), TBX10 (rhombomere 4 and rhombomere 6, Hindbrain development

93
), UBTFL1 

(preimplantation-specific94), ZIM3 (meiotic cells in testis95), ZSCAN4 (2-cell stage embryos96),  

Rare cell types in specialized regions: GSC2 (interpeduncular nucleus97), NOBOX (primordial 

and growing oocytes98), NOTO (organizer node and in the nascent notochord99), TBPL2 

(oocyte100). 

For three of these factors a review of the literature could not find any information on their 

expression patterns (OVOL3, ZNF648, ZSCAN5B), perhaps indicating they are not expressed, 

and while ASCL4 was reported to be expressed in fetal skin
101
, we find no such expression in 

either mouse or human fetal skin.  
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Supplementary Note 7: Comparison of top TFs with mouse phenotypes 
For each sample we generated ranked lists of top TFs based on the expression of a TF promoter 

in a sample compared to the median expression across the entire collection [log10(expression + 

0.1) –log10(median expression + 0.1)]. The results of which are available online using the 

SSTAR tool [http://fantom.gsc.riken.jp/5/sstar/Main_Page]. To demonstrate the likely relevance 

of the top transcription factors identified in each sample we examined the fraction of top 20 TF 

promoters with relevant knockout mouse phenotypes at the MGI
102,103

(retrieved July 2013). We 

specifically focused on a subset of 316 human primary cell samples and 89 mouse primary cell 

samples. The remaining primary cell samples were excluded from this analysis either because 

they were treated samples (pathogens, expanded in culture etc. e.g. CD14+ monocytes - treated 

with Candida) or there was no clear way of assessing them for relevant phenotypes (e.g. 

mesenchymal precursor cell - ovarian cancer left ovary). For the set of top TFs identified in the 

triaged set of primary cells we then downloaded all associated mammalian phenotypes and 

manually scored associations. Examples of manual associations include 

Atoh1+ Inner ear hair cells [MP:0001967: deafness, MP:0006325: impaired hearing, 

MP:0004699: unilateral deafness, MP:0002855: abnormal cochlear ganglion morphology] 

Reticulocytes [MP:0000245: abnormal erythropoiesis, MP:0002026: leukemia, MP:0002874: 

decreased hemoglobin content, MP:0002875: decreased erythrocyte cell number, MP:0010763: 

abnormal hematopoietic stem cell physiology] 

Renal Proximal Tubular Epithelial Cell [MP:0000527: abnormal kidney development, 

MP:0002135: abnormal kidney morphology, MP:0002703: abnormal renal tubule morphology, 

MP:0002989: small kidney, MP:0003918: decreased kidney weight, MP:0000520: absent 

kidney] 

Adipocyte [MP:0002644: decreased circulating triglyceride level, MP:0010025: decreased total 

body fat amount, MP:0000013: abnormal adipose tissue distribution, MP:0001783: decreased 

white adipose tissue amount, MP:0002118: abnormal lipid homeostasis, MP:0008844: decreased 

subcutaneous adipose tissue amount, MP:0001547: abnormal lipid level, MP:0009115: abnormal 

fat cell morphology, MP:0000187: abnormal triglyceride level, MP:0001261: obese] 

 

Considering the top 20 cell type enriched TF promoters for the triaged set 61% of mouse and 

40% of human TFs for which there were knockouts available had relevant phenotypes.
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