from __future__ import absolute_import from numbers import Number import plotly.exceptions import plotly.colors as clrs from plotly.graph_objs import graph_objs def make_linear_colorscale(colors): """ Makes a list of colors into a colorscale-acceptable form For documentation regarding to the form of the output, see https://plot.ly/python/reference/#mesh3d-colorscale """ scale = 1.0 / (len(colors) - 1) return [[i * scale, color] for i, color in enumerate(colors)] def create_2d_density( x, y, colorscale="Earth", ncontours=20, hist_color=(0, 0, 0.5), point_color=(0, 0, 0.5), point_size=2, title="2D Density Plot", height=600, width=600, ): """ **deprecated**, use instead :func:`plotly.express.density_heatmap`. :param (list|array) x: x-axis data for plot generation :param (list|array) y: y-axis data for plot generation :param (str|tuple|list) colorscale: either a plotly scale name, an rgb or hex color, a color tuple or a list or tuple of colors. An rgb color is of the form 'rgb(x, y, z)' where x, y, z belong to the interval [0, 255] and a color tuple is a tuple of the form (a, b, c) where a, b and c belong to [0, 1]. If colormap is a list, it must contain the valid color types aforementioned as its members. :param (int) ncontours: the number of 2D contours to draw on the plot :param (str) hist_color: the color of the plotted histograms :param (str) point_color: the color of the scatter points :param (str) point_size: the color of the scatter points :param (str) title: set the title for the plot :param (float) height: the height of the chart :param (float) width: the width of the chart Examples -------- Example 1: Simple 2D Density Plot >>> from plotly.figure_factory import create_2d_density >>> import numpy as np >>> # Make data points >>> t = np.linspace(-1,1.2,2000) >>> x = (t**3)+(0.3*np.random.randn(2000)) >>> y = (t**6)+(0.3*np.random.randn(2000)) >>> # Create a figure >>> fig = create_2d_density(x, y) >>> # Plot the data >>> fig.show() Example 2: Using Parameters >>> from plotly.figure_factory import create_2d_density >>> import numpy as np >>> # Make data points >>> t = np.linspace(-1,1.2,2000) >>> x = (t**3)+(0.3*np.random.randn(2000)) >>> y = (t**6)+(0.3*np.random.randn(2000)) >>> # Create custom colorscale >>> colorscale = ['#7A4579', '#D56073', 'rgb(236,158,105)', ... (1, 1, 0.2), (0.98,0.98,0.98)] >>> # Create a figure >>> fig = create_2d_density(x, y, colorscale=colorscale, ... hist_color='rgb(255, 237, 222)', point_size=3) >>> # Plot the data >>> fig.show() """ # validate x and y are filled with numbers only for array in [x, y]: if not all(isinstance(element, Number) for element in array): raise plotly.exceptions.PlotlyError( "All elements of your 'x' and 'y' lists must be numbers." ) # validate x and y are the same length if len(x) != len(y): raise plotly.exceptions.PlotlyError( "Both lists 'x' and 'y' must be the same length." ) colorscale = clrs.validate_colors(colorscale, "rgb") colorscale = make_linear_colorscale(colorscale) # validate hist_color and point_color hist_color = clrs.validate_colors(hist_color, "rgb") point_color = clrs.validate_colors(point_color, "rgb") trace1 = graph_objs.Scatter( x=x, y=y, mode="markers", name="points", marker=dict(color=point_color[0], size=point_size, opacity=0.4), ) trace2 = graph_objs.Histogram2dContour( x=x, y=y, name="density", ncontours=ncontours, colorscale=colorscale, reversescale=True, showscale=False, ) trace3 = graph_objs.Histogram( x=x, name="x density", marker=dict(color=hist_color[0]), yaxis="y2" ) trace4 = graph_objs.Histogram( y=y, name="y density", marker=dict(color=hist_color[0]), xaxis="x2" ) data = [trace1, trace2, trace3, trace4] layout = graph_objs.Layout( showlegend=False, autosize=False, title=title, height=height, width=width, xaxis=dict(domain=[0, 0.85], showgrid=False, zeroline=False), yaxis=dict(domain=[0, 0.85], showgrid=False, zeroline=False), margin=dict(t=50), hovermode="closest", bargap=0, xaxis2=dict(domain=[0.85, 1], showgrid=False, zeroline=False), yaxis2=dict(domain=[0.85, 1], showgrid=False, zeroline=False), ) fig = graph_objs.Figure(data=data, layout=layout) return fig