from __future__ import absolute_import import math from plotly import exceptions from plotly.graph_objs import graph_objs from plotly.figure_factory import utils def create_quiver( x, y, u, v, scale=0.1, arrow_scale=0.3, angle=math.pi / 9, scaleratio=None, **kwargs ): """ Returns data for a quiver plot. :param (list|ndarray) x: x coordinates of the arrow locations :param (list|ndarray) y: y coordinates of the arrow locations :param (list|ndarray) u: x components of the arrow vectors :param (list|ndarray) v: y components of the arrow vectors :param (float in [0,1]) scale: scales size of the arrows(ideally to avoid overlap). Default = .1 :param (float in [0,1]) arrow_scale: value multiplied to length of barb to get length of arrowhead. Default = .3 :param (angle in radians) angle: angle of arrowhead. Default = pi/9 :param (positive float) scaleratio: the ratio between the scale of the y-axis and the scale of the x-axis (scale_y / scale_x). Default = None, the scale ratio is not fixed. :param kwargs: kwargs passed through plotly.graph_objs.Scatter for more information on valid kwargs call help(plotly.graph_objs.Scatter) :rtype (dict): returns a representation of quiver figure. Example 1: Trivial Quiver >>> from plotly.figure_factory import create_quiver >>> import math >>> # 1 Arrow from (0,0) to (1,1) >>> fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1) >>> fig.show() Example 2: Quiver plot using meshgrid >>> from plotly.figure_factory import create_quiver >>> import numpy as np >>> import math >>> # Add data >>> x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2)) >>> u = np.cos(x)*y >>> v = np.sin(x)*y >>> #Create quiver >>> fig = create_quiver(x, y, u, v) >>> fig.show() Example 3: Styling the quiver plot >>> from plotly.figure_factory import create_quiver >>> import numpy as np >>> import math >>> # Add data >>> x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5), ... np.arange(-math.pi, math.pi, .5)) >>> u = np.cos(x)*y >>> v = np.sin(x)*y >>> # Create quiver >>> fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6, ... name='Wind Velocity', line=dict(width=1)) >>> # Add title to layout >>> fig.update_layout(title='Quiver Plot') # doctest: +SKIP >>> fig.show() Example 4: Forcing a fix scale ratio to maintain the arrow length >>> from plotly.figure_factory import create_quiver >>> import numpy as np >>> # Add data >>> x,y = np.meshgrid(np.arange(0.5, 3.5, .5), np.arange(0.5, 4.5, .5)) >>> u = x >>> v = y >>> angle = np.arctan(v / u) >>> norm = 0.25 >>> u = norm * np.cos(angle) >>> v = norm * np.sin(angle) >>> # Create quiver with a fix scale ratio >>> fig = create_quiver(x, y, u, v, scale = 1, scaleratio = 0.5) >>> fig.show() """ utils.validate_equal_length(x, y, u, v) utils.validate_positive_scalars(arrow_scale=arrow_scale, scale=scale) if scaleratio is None: quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle) else: quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle, scaleratio) barb_x, barb_y = quiver_obj.get_barbs() arrow_x, arrow_y = quiver_obj.get_quiver_arrows() quiver_plot = graph_objs.Scatter( x=barb_x + arrow_x, y=barb_y + arrow_y, mode="lines", **kwargs ) data = [quiver_plot] if scaleratio is None: layout = graph_objs.Layout(hovermode="closest") else: layout = graph_objs.Layout( hovermode="closest", yaxis=dict(scaleratio=scaleratio, scaleanchor="x") ) return graph_objs.Figure(data=data, layout=layout) class _Quiver(object): """ Refer to FigureFactory.create_quiver() for docstring """ def __init__(self, x, y, u, v, scale, arrow_scale, angle, scaleratio=1, **kwargs): try: x = utils.flatten(x) except exceptions.PlotlyError: pass try: y = utils.flatten(y) except exceptions.PlotlyError: pass try: u = utils.flatten(u) except exceptions.PlotlyError: pass try: v = utils.flatten(v) except exceptions.PlotlyError: pass self.x = x self.y = y self.u = u self.v = v self.scale = scale self.scaleratio = scaleratio self.arrow_scale = arrow_scale self.angle = angle self.end_x = [] self.end_y = [] self.scale_uv() barb_x, barb_y = self.get_barbs() arrow_x, arrow_y = self.get_quiver_arrows() def scale_uv(self): """ Scales u and v to avoid overlap of the arrows. u and v are added to x and y to get the endpoints of the arrows so a smaller scale value will result in less overlap of arrows. """ self.u = [i * self.scale * self.scaleratio for i in self.u] self.v = [i * self.scale for i in self.v] def get_barbs(self): """ Creates x and y startpoint and endpoint pairs After finding the endpoint of each barb this zips startpoint and endpoint pairs to create 2 lists: x_values for barbs and y values for barbs :rtype: (list, list) barb_x, barb_y: list of startpoint and endpoint x_value pairs separated by a None to create the barb of the arrow, and list of startpoint and endpoint y_value pairs separated by a None to create the barb of the arrow. """ self.end_x = [i + j for i, j in zip(self.x, self.u)] self.end_y = [i + j for i, j in zip(self.y, self.v)] empty = [None] * len(self.x) barb_x = utils.flatten(zip(self.x, self.end_x, empty)) barb_y = utils.flatten(zip(self.y, self.end_y, empty)) return barb_x, barb_y def get_quiver_arrows(self): """ Creates lists of x and y values to plot the arrows Gets length of each barb then calculates the length of each side of the arrow. Gets angle of barb and applies angle to each side of the arrowhead. Next uses arrow_scale to scale the length of arrowhead and creates x and y values for arrowhead point1 and point2. Finally x and y values for point1, endpoint and point2s for each arrowhead are separated by a None and zipped to create lists of x and y values for the arrows. :rtype: (list, list) arrow_x, arrow_y: list of point1, endpoint, point2 x_values separated by a None to create the arrowhead and list of point1, endpoint, point2 y_values separated by a None to create the barb of the arrow. """ dif_x = [i - j for i, j in zip(self.end_x, self.x)] dif_y = [i - j for i, j in zip(self.end_y, self.y)] # Get barb lengths(default arrow length = 30% barb length) barb_len = [None] * len(self.x) for index in range(len(barb_len)): barb_len[index] = math.hypot(dif_x[index] / self.scaleratio, dif_y[index]) # Make arrow lengths arrow_len = [None] * len(self.x) arrow_len = [i * self.arrow_scale for i in barb_len] # Get barb angles barb_ang = [None] * len(self.x) for index in range(len(barb_ang)): barb_ang[index] = math.atan2(dif_y[index], dif_x[index] / self.scaleratio) # Set angles to create arrow ang1 = [i + self.angle for i in barb_ang] ang2 = [i - self.angle for i in barb_ang] cos_ang1 = [None] * len(ang1) for index in range(len(ang1)): cos_ang1[index] = math.cos(ang1[index]) seg1_x = [i * j for i, j in zip(arrow_len, cos_ang1)] sin_ang1 = [None] * len(ang1) for index in range(len(ang1)): sin_ang1[index] = math.sin(ang1[index]) seg1_y = [i * j for i, j in zip(arrow_len, sin_ang1)] cos_ang2 = [None] * len(ang2) for index in range(len(ang2)): cos_ang2[index] = math.cos(ang2[index]) seg2_x = [i * j for i, j in zip(arrow_len, cos_ang2)] sin_ang2 = [None] * len(ang2) for index in range(len(ang2)): sin_ang2[index] = math.sin(ang2[index]) seg2_y = [i * j for i, j in zip(arrow_len, sin_ang2)] # Set coordinates to create arrow for index in range(len(self.end_x)): point1_x = [i - j * self.scaleratio for i, j in zip(self.end_x, seg1_x)] point1_y = [i - j for i, j in zip(self.end_y, seg1_y)] point2_x = [i - j * self.scaleratio for i, j in zip(self.end_x, seg2_x)] point2_y = [i - j for i, j in zip(self.end_y, seg2_y)] # Combine lists to create arrow empty = [None] * len(self.end_x) arrow_x = utils.flatten(zip(point1_x, self.end_x, point2_x, empty)) arrow_y = utils.flatten(zip(point1_y, self.end_y, point2_y, empty)) return arrow_x, arrow_y