import warnings import itertools from contextlib import contextmanager from distutils.version import LooseVersion import numpy as np import matplotlib as mpl from matplotlib import transforms from .. import utils from .. import _py3k_compat as py3k class Renderer(object): @staticmethod def ax_zoomable(ax): return bool(ax and ax.get_navigate()) @staticmethod def ax_has_xgrid(ax): return bool(ax and ax.xaxis._gridOnMajor and ax.yaxis.get_gridlines()) @staticmethod def ax_has_ygrid(ax): return bool(ax and ax.yaxis._gridOnMajor and ax.yaxis.get_gridlines()) @property def current_ax_zoomable(self): return self.ax_zoomable(self._current_ax) @property def current_ax_has_xgrid(self): return self.ax_has_xgrid(self._current_ax) @property def current_ax_has_ygrid(self): return self.ax_has_ygrid(self._current_ax) @contextmanager def draw_figure(self, fig, props): if hasattr(self, "_current_fig") and self._current_fig is not None: warnings.warn("figure embedded in figure: something is wrong") self._current_fig = fig self._fig_props = props self.open_figure(fig=fig, props=props) yield self.close_figure(fig=fig) self._current_fig = None self._fig_props = {} @contextmanager def draw_axes(self, ax, props): if hasattr(self, "_current_ax") and self._current_ax is not None: warnings.warn("axes embedded in axes: something is wrong") self._current_ax = ax self._ax_props = props self.open_axes(ax=ax, props=props) yield self.close_axes(ax=ax) self._current_ax = None self._ax_props = {} @contextmanager def draw_legend(self, legend, props): self._current_legend = legend self._legend_props = props self.open_legend(legend=legend, props=props) yield self.close_legend(legend=legend) self._current_legend = None self._legend_props = {} # Following are the functions which should be overloaded in subclasses def open_figure(self, fig, props): """ Begin commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The Figure which will contain the ensuing axes and elements props : dictionary The dictionary of figure properties """ pass def close_figure(self, fig): """ Finish commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The figure which is finished being drawn. """ pass def open_axes(self, ax, props): """ Begin commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which will contain the ensuing axes and elements props : dictionary The dictionary of axes properties """ pass def close_axes(self, ax): """ Finish commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which is finished being drawn. """ pass def open_legend(self, legend, props): """ Beging commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend that will contain the ensuing elements props : dictionary The dictionary of legend properties """ pass def close_legend(self, legend): """ Finish commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend which is finished being drawn """ pass def draw_marked_line( self, data, coordinates, linestyle, markerstyle, label, mplobj=None ): """Draw a line that also has markers. If this isn't reimplemented by a renderer object, by default, it will make a call to BOTH draw_line and draw_markers when both markerstyle and linestyle are not None in the same Line2D object. """ if linestyle is not None: self.draw_line(data, coordinates, linestyle, label, mplobj) if markerstyle is not None: self.draw_markers(data, coordinates, markerstyle, label, mplobj) def draw_line(self, data, coordinates, style, label, mplobj=None): """ Draw a line. By default, draw the line via the draw_path() command. Some renderers might wish to override this and provide more fine-grained behavior. In matplotlib, lines are generally created via the plt.plot() command, though this command also can create marker collections. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the line. mplobj : matplotlib object the matplotlib plot element which generated this line """ pathcodes = ["M"] + (data.shape[0] - 1) * ["L"] pathstyle = dict(facecolor="none", **style) pathstyle["edgecolor"] = pathstyle.pop("color") pathstyle["edgewidth"] = pathstyle.pop("linewidth") self.draw_path( data=data, coordinates=coordinates, pathcodes=pathcodes, style=pathstyle, mplobj=mplobj, ) @staticmethod def _iter_path_collection(paths, path_transforms, offsets, styles): """Build an iterator over the elements of the path collection""" N = max(len(paths), len(offsets)) # Before mpl 1.4.0, path_transform can be a false-y value, not a valid # transformation matrix. if LooseVersion(mpl.__version__) < LooseVersion("1.4.0"): if path_transforms is None: path_transforms = [np.eye(3)] edgecolor = styles["edgecolor"] if np.size(edgecolor) == 0: edgecolor = ["none"] facecolor = styles["facecolor"] if np.size(facecolor) == 0: facecolor = ["none"] elements = [ paths, path_transforms, offsets, edgecolor, styles["linewidth"], facecolor, ] it = itertools return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N) def draw_path_collection( self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None, ): """ Draw a collection of paths. The paths, offsets, and styles are all iterables, and the number of paths is max(len(paths), len(offsets)). By default, this is implemented via multiple calls to the draw_path() function. For efficiency, Renderers may choose to customize this implementation. Examples of path collections created by matplotlib are scatter plots, histograms, contour plots, and many others. Parameters ---------- paths : list list of tuples, where each tuple has two elements: (data, pathcodes). See draw_path() for a description of these. path_coordinates: string the coordinates code for the paths, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. path_transforms: array_like an array of shape (*, 3, 3), giving a series of 2D Affine transforms for the paths. These encode translations, rotations, and scalings in the standard way. offsets: array_like An array of offsets of shape (N, 2) offset_coordinates : string the coordinates code for the offsets, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. offset_order : string either "before" or "after". This specifies whether the offset is applied before the path transform, or after. The matplotlib backend equivalent is "before"->"data", "after"->"screen". styles: dictionary A dictionary in which each value is a list of length N, containing the style(s) for the paths. mplobj : matplotlib object the matplotlib plot element which generated this collection """ if offset_order == "before": raise NotImplementedError("offset before transform") for tup in self._iter_path_collection(paths, path_transforms, offsets, styles): (path, path_transform, offset, ec, lw, fc) = tup vertices, pathcodes = path path_transform = transforms.Affine2D(path_transform) vertices = path_transform.transform(vertices) # This is a hack: if path_coordinates == "figure": path_coordinates = "points" style = { "edgecolor": utils.export_color(ec), "facecolor": utils.export_color(fc), "edgewidth": lw, "dasharray": "10,0", "alpha": styles["alpha"], "zorder": styles["zorder"], } self.draw_path( data=vertices, coordinates=path_coordinates, pathcodes=pathcodes, style=style, offset=offset, offset_coordinates=offset_coordinates, mplobj=mplobj, ) def draw_markers(self, data, coordinates, style, label, mplobj=None): """ Draw a set of markers. By default, this is done by repeatedly calling draw_path(), but renderers should generally overload this method to provide a more efficient implementation. In matplotlib, markers are created using the plt.plot() command. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the markers. mplobj : matplotlib object the matplotlib plot element which generated this marker collection """ vertices, pathcodes = style["markerpath"] pathstyle = dict( (key, style[key]) for key in ["alpha", "edgecolor", "facecolor", "zorder", "edgewidth"] ) pathstyle["dasharray"] = "10,0" for vertex in data: self.draw_path( data=vertices, coordinates="points", pathcodes=pathcodes, style=pathstyle, offset=vertex, offset_coordinates=coordinates, mplobj=mplobj, ) def draw_text( self, text, position, coordinates, style, text_type=None, mplobj=None ): """ Draw text on the image. Parameters ---------- text : string The text to draw position : tuple The (x, y) position of the text coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the text. text_type : string or None if specified, a type of text such as "xlabel", "ylabel", "title" mplobj : matplotlib object the matplotlib plot element which generated this text """ raise NotImplementedError() def draw_path( self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None, ): """ Draw a path. In matplotlib, paths are created by filled regions, histograms, contour plots, patches, etc. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, 'figure' for figure (pixel) coordinates, or "points" for raw point coordinates (useful in conjunction with offsets, below). pathcodes : list A list of single-character SVG pathcodes associated with the data. Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't', 'S', 's', 'C', 'c', 'Z', 'z'] See the SVG specification for details. Note that some path codes consume more than one datapoint (while 'Z' consumes none), so in general, the length of the pathcodes list will not be the same as that of the data array. style : dictionary a dictionary specifying the appearance of the line. offset : list (optional) the (x, y) offset of the path. If not given, no offset will be used. offset_coordinates : string (optional) A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. mplobj : matplotlib object the matplotlib plot element which generated this path """ raise NotImplementedError() def draw_image(self, imdata, extent, coordinates, style, mplobj=None): """ Draw an image. Parameters ---------- imdata : string base64 encoded png representation of the image extent : list the axes extent of the image: [xmin, xmax, ymin, ymax] coordinates: string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the image mplobj : matplotlib object the matplotlib plot object which generated this image """ raise NotImplementedError()