# -*- coding: utf-8 -*-
"""
tools
=====
Functions that USERS will possibly want access to.
"""
from __future__ import absolute_import
import json
import warnings
import six
import re
import os
from plotly import exceptions, optional_imports
from plotly.files import PLOTLY_DIR
DEFAULT_PLOTLY_COLORS = [
"rgb(31, 119, 180)",
"rgb(255, 127, 14)",
"rgb(44, 160, 44)",
"rgb(214, 39, 40)",
"rgb(148, 103, 189)",
"rgb(140, 86, 75)",
"rgb(227, 119, 194)",
"rgb(127, 127, 127)",
"rgb(188, 189, 34)",
"rgb(23, 190, 207)",
]
REQUIRED_GANTT_KEYS = ["Task", "Start", "Finish"]
PLOTLY_SCALES = {
"Greys": ["rgb(0,0,0)", "rgb(255,255,255)"],
"YlGnBu": ["rgb(8,29,88)", "rgb(255,255,217)"],
"Greens": ["rgb(0,68,27)", "rgb(247,252,245)"],
"YlOrRd": ["rgb(128,0,38)", "rgb(255,255,204)"],
"Bluered": ["rgb(0,0,255)", "rgb(255,0,0)"],
"RdBu": ["rgb(5,10,172)", "rgb(178,10,28)"],
"Reds": ["rgb(220,220,220)", "rgb(178,10,28)"],
"Blues": ["rgb(5,10,172)", "rgb(220,220,220)"],
"Picnic": ["rgb(0,0,255)", "rgb(255,0,0)"],
"Rainbow": ["rgb(150,0,90)", "rgb(255,0,0)"],
"Portland": ["rgb(12,51,131)", "rgb(217,30,30)"],
"Jet": ["rgb(0,0,131)", "rgb(128,0,0)"],
"Hot": ["rgb(0,0,0)", "rgb(255,255,255)"],
"Blackbody": ["rgb(0,0,0)", "rgb(160,200,255)"],
"Earth": ["rgb(0,0,130)", "rgb(255,255,255)"],
"Electric": ["rgb(0,0,0)", "rgb(255,250,220)"],
"Viridis": ["rgb(68,1,84)", "rgb(253,231,37)"],
}
# color constants for violin plot
DEFAULT_FILLCOLOR = "#1f77b4"
DEFAULT_HISTNORM = "probability density"
ALTERNATIVE_HISTNORM = "probability"
# Warning format
def warning_on_one_line(message, category, filename, lineno, file=None, line=None):
return "%s:%s: %s:\n\n%s\n\n" % (filename, lineno, category.__name__, message)
warnings.formatwarning = warning_on_one_line
ipython_core_display = optional_imports.get_module("IPython.core.display")
sage_salvus = optional_imports.get_module("sage_salvus")
### mpl-related tools ###
def mpl_to_plotly(fig, resize=False, strip_style=False, verbose=False):
"""Convert a matplotlib figure to plotly dictionary and send.
All available information about matplotlib visualizations are stored
within a matplotlib.figure.Figure object. You can create a plot in python
using matplotlib, store the figure object, and then pass this object to
the fig_to_plotly function. In the background, mplexporter is used to
crawl through the mpl figure object for appropriate information. This
information is then systematically sent to the PlotlyRenderer which
creates the JSON structure used to make plotly visualizations. Finally,
these dictionaries are sent to plotly and your browser should open up a
new tab for viewing! Optionally, if you're working in IPython, you can
set notebook=True and the PlotlyRenderer will call plotly.iplot instead
of plotly.plot to have the graph appear directly in the IPython notebook.
Note, this function gives the user access to a simple, one-line way to
render an mpl figure in plotly. If you need to trouble shoot, you can do
this step manually by NOT running this fuction and entereing the following:
===========================================================================
from plotly.matplotlylib import mplexporter, PlotlyRenderer
# create an mpl figure and store it under a varialble 'fig'
renderer = PlotlyRenderer()
exporter = mplexporter.Exporter(renderer)
exporter.run(fig)
===========================================================================
You can then inspect the JSON structures by accessing these:
renderer.layout -- a plotly layout dictionary
renderer.data -- a list of plotly data dictionaries
"""
matplotlylib = optional_imports.get_module("plotly.matplotlylib")
if matplotlylib:
renderer = matplotlylib.PlotlyRenderer()
matplotlylib.Exporter(renderer).run(fig)
if resize:
renderer.resize()
if strip_style:
renderer.strip_style()
if verbose:
print(renderer.msg)
return renderer.plotly_fig
else:
warnings.warn(
"To use Plotly's matplotlylib functionality, you'll need to have "
"matplotlib successfully installed with all of its dependencies. "
"You're getting this error because matplotlib or one of its "
"dependencies doesn't seem to be installed correctly."
)
### graph_objs related tools ###
def get_subplots(rows=1, columns=1, print_grid=False, **kwargs):
"""Return a dictionary instance with the subplots set in 'layout'.
Example 1:
# stack two subplots vertically
fig = tools.get_subplots(rows=2)
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x1', yaxis='y1')]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Example 2:
# print out string showing the subplot grid you've put in the layout
fig = tools.get_subplots(rows=3, columns=2, print_grid=True)
Keywords arguments with constant defaults:
rows (kwarg, int greater than 0, default=1):
Number of rows, evenly spaced vertically on the figure.
columns (kwarg, int greater than 0, default=1):
Number of columns, evenly spaced horizontally on the figure.
horizontal_spacing (kwarg, float in [0,1], default=0.1):
Space between subplot columns. Applied to all columns.
vertical_spacing (kwarg, float in [0,1], default=0.05):
Space between subplot rows. Applied to all rows.
print_grid (kwarg, True | False, default=False):
If True, prints a tab-delimited string representation
of your plot grid.
Keyword arguments with variable defaults:
horizontal_spacing (kwarg, float in [0,1], default=0.2 / columns):
Space between subplot columns.
vertical_spacing (kwarg, float in [0,1], default=0.3 / rows):
Space between subplot rows.
"""
# TODO: protected until #282
from plotly.graph_objs import graph_objs
warnings.warn(
"tools.get_subplots is depreciated. " "Please use tools.make_subplots instead."
)
# Throw exception for non-integer rows and columns
if not isinstance(rows, int) or rows <= 0:
raise Exception("Keyword argument 'rows' " "must be an int greater than 0")
if not isinstance(columns, int) or columns <= 0:
raise Exception("Keyword argument 'columns' " "must be an int greater than 0")
# Throw exception if non-valid kwarg is sent
VALID_KWARGS = ["horizontal_spacing", "vertical_spacing"]
for key in kwargs.keys():
if key not in VALID_KWARGS:
raise Exception("Invalid keyword argument: '{0}'".format(key))
# Set 'horizontal_spacing' / 'vertical_spacing' w.r.t. rows / columns
try:
horizontal_spacing = float(kwargs["horizontal_spacing"])
except KeyError:
horizontal_spacing = 0.2 / columns
try:
vertical_spacing = float(kwargs["vertical_spacing"])
except KeyError:
vertical_spacing = 0.3 / rows
fig = dict(layout=graph_objs.Layout()) # will return this at the end
plot_width = (1 - horizontal_spacing * (columns - 1)) / columns
plot_height = (1 - vertical_spacing * (rows - 1)) / rows
plot_num = 0
for rrr in range(rows):
for ccc in range(columns):
xaxis_name = "xaxis{0}".format(plot_num + 1)
x_anchor = "y{0}".format(plot_num + 1)
x_start = (plot_width + horizontal_spacing) * ccc
x_end = x_start + plot_width
yaxis_name = "yaxis{0}".format(plot_num + 1)
y_anchor = "x{0}".format(plot_num + 1)
y_start = (plot_height + vertical_spacing) * rrr
y_end = y_start + plot_height
xaxis = dict(domain=[x_start, x_end], anchor=x_anchor)
fig["layout"][xaxis_name] = xaxis
yaxis = dict(domain=[y_start, y_end], anchor=y_anchor)
fig["layout"][yaxis_name] = yaxis
plot_num += 1
if print_grid:
print("This is the format of your plot grid!")
grid_string = ""
plot = 1
for rrr in range(rows):
grid_line = ""
for ccc in range(columns):
grid_line += "[{0}]\t".format(plot)
plot += 1
grid_string = grid_line + "\n" + grid_string
print(grid_string)
return graph_objs.Figure(fig) # forces us to validate what we just did...
def make_subplots(
rows=1,
cols=1,
shared_xaxes=False,
shared_yaxes=False,
start_cell="top-left",
print_grid=None,
**kwargs
):
"""Return an instance of plotly.graph_objs.Figure
with the subplots domain set in 'layout'.
Example 1:
# stack two subplots vertically
fig = tools.make_subplots(rows=2)
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
# or see Figure.append_trace
Example 2:
# subplots with shared x axes
fig = tools.make_subplots(rows=2, shared_xaxes=True)
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x1,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], yaxis='y2')]
Example 3:
# irregular subplot layout (more examples below under 'specs')
fig = tools.make_subplots(rows=2, cols=2,
specs=[[{}, {}],
[{'colspan': 2}, None]])
This is the format of your plot grid!
[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]
[ (2,1) x3,y3 - ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x3', yaxis='y3')]
Example 4:
# insets
fig = tools.make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}])
This is the format of your plot grid!
[ (1,1) x1,y1 ]
With insets:
[ x2,y2 ] over [ (1,1) x1,y1 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Example 5:
# include subplot titles
fig = tools.make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2'))
This is the format of your plot grid:
[ (1,1) x1,y1 ]
[ (2,1) x2,y2 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Example 6:
# Include subplot title on one plot (but not all)
fig = tools.make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}],
subplot_titles=('','Inset'))
This is the format of your plot grid!
[ (1,1) x1,y1 ]
With insets:
[ x2,y2 ] over [ (1,1) x1,y1 ]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2])]
fig['data'] += [Scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2')]
Keywords arguments with constant defaults:
rows (kwarg, int greater than 0, default=1):
Number of rows in the subplot grid.
cols (kwarg, int greater than 0, default=1):
Number of columns in the subplot grid.
shared_xaxes (kwarg, boolean or list, default=False)
Assign shared x axes.
If True, subplots in the same grid column have one common
shared x-axis at the bottom of the gird.
To assign shared x axes per subplot grid cell (see 'specs'),
send list (or list of lists, one list per shared x axis)
of cell index tuples.
shared_yaxes (kwarg, boolean or list, default=False)
Assign shared y axes.
If True, subplots in the same grid row have one common
shared y-axis on the left-hand side of the gird.
To assign shared y axes per subplot grid cell (see 'specs'),
send list (or list of lists, one list per shared y axis)
of cell index tuples.
start_cell (kwarg, 'bottom-left' or 'top-left', default='top-left')
Choose the starting cell in the subplot grid used to set the
domains of the subplots.
print_grid (kwarg, boolean, default=True):
If True, prints a tab-delimited string representation of
your plot grid.
Keyword arguments with variable defaults:
horizontal_spacing (kwarg, float in [0,1], default=0.2 / cols):
Space between subplot columns.
Applies to all columns (use 'specs' subplot-dependents spacing)
vertical_spacing (kwarg, float in [0,1], default=0.3 / rows):
Space between subplot rows.
Applies to all rows (use 'specs' subplot-dependents spacing)
subplot_titles (kwarg, list of strings, default=empty list):
Title of each subplot.
"" can be included in the list if no subplot title is desired in
that space so that the titles are properly indexed.
specs (kwarg, list of lists of dictionaries):
Subplot specifications.
ex1: specs=[[{}, {}], [{'colspan': 2}, None]]
ex2: specs=[[{'rowspan': 2}, {}], [None, {}]]
- Indices of the outer list correspond to subplot grid rows
starting from the bottom. The number of rows in 'specs'
must be equal to 'rows'.
- Indices of the inner lists correspond to subplot grid columns
starting from the left. The number of columns in 'specs'
must be equal to 'cols'.
- Each item in the 'specs' list corresponds to one subplot
in a subplot grid. (N.B. The subplot grid has exactly 'rows'
times 'cols' cells.)
- Use None for blank a subplot cell (or to move pass a col/row span).
- Note that specs[0][0] has the specs of the 'start_cell' subplot.
- Each item in 'specs' is a dictionary.
The available keys are:
* is_3d (boolean, default=False): flag for 3d scenes
* colspan (int, default=1): number of subplot columns
for this subplot to span.
* rowspan (int, default=1): number of subplot rows
for this subplot to span.
* l (float, default=0.0): padding left of cell
* r (float, default=0.0): padding right of cell
* t (float, default=0.0): padding right of cell
* b (float, default=0.0): padding bottom of cell
- Use 'horizontal_spacing' and 'vertical_spacing' to adjust
the spacing in between the subplots.
insets (kwarg, list of dictionaries):
Inset specifications.
- Each item in 'insets' is a dictionary.
The available keys are:
* cell (tuple, default=(1,1)): (row, col) index of the
subplot cell to overlay inset axes onto.
* is_3d (boolean, default=False): flag for 3d scenes
* l (float, default=0.0): padding left of inset
in fraction of cell width
* w (float or 'to_end', default='to_end') inset width
in fraction of cell width ('to_end': to cell right edge)
* b (float, default=0.0): padding bottom of inset
in fraction of cell height
* h (float or 'to_end', default='to_end') inset height
in fraction of cell height ('to_end': to cell top edge)
column_width (kwarg, list of numbers)
Column_width specifications
- Functions similarly to `column_width` of `plotly.graph_objs.Table`.
Specify a list that contains numbers where the amount of numbers in
the list is equal to `cols`.
- The numbers in the list indicate the proportions that each column
domains take across the full horizontal domain excluding padding.
- For example, if columns_width=[3, 1], horizontal_spacing=0, and
cols=2, the domains for each column would be [0. 0.75] and [0.75, 1]
row_width (kwargs, list of numbers)
Row_width specifications
- Functions similarly to `column_width`. Specify a list that contains
numbers where the amount of numbers in the list is equal to `rows`.
- The numbers in the list indicate the proportions that each row
domains take along the full vertical domain excluding padding.
- For example, if row_width=[3, 1], vertical_spacing=0, and
cols=2, the domains for each row from top to botton would be
[0. 0.75] and [0.75, 1]
"""
import plotly.subplots
warnings.warn(
"plotly.tools.make_subplots is deprecated, "
"please use plotly.subplots.make_subplots instead",
DeprecationWarning,
stacklevel=1,
)
return plotly.subplots.make_subplots(
rows=rows,
cols=cols,
shared_xaxes=shared_xaxes,
shared_yaxes=shared_yaxes,
start_cell=start_cell,
print_grid=print_grid,
**kwargs
)
warnings.filterwarnings(
"default", r"plotly\.tools\.make_subplots is deprecated", DeprecationWarning
)
def get_graph_obj(obj, obj_type=None):
"""Returns a new graph object.
OLD FUNCTION: this will *silently* strip out invalid pieces of the object.
NEW FUNCTION: no striping of invalid pieces anymore - only raises error
on unrecognized graph_objs
"""
# TODO: Deprecate or move. #283
from plotly.graph_objs import graph_objs
try:
cls = getattr(graph_objs, obj_type)
except (AttributeError, KeyError):
raise exceptions.PlotlyError(
"'{}' is not a recognized graph_obj.".format(obj_type)
)
return cls(obj)
def _replace_newline(obj):
"""Replaces '\n' with '
' for all strings in a collection."""
if isinstance(obj, dict):
d = dict()
for key, val in list(obj.items()):
d[key] = _replace_newline(val)
return d
elif isinstance(obj, list):
l = list()
for index, entry in enumerate(obj):
l += [_replace_newline(entry)]
return l
elif isinstance(obj, six.string_types):
s = obj.replace("\n", "
")
if s != obj:
warnings.warn(
"Looks like you used a newline character: '\\n'.\n\n"
"Plotly uses a subset of HTML escape characters\n"
"to do things like newline (
), bold (),\n"
"italics (), etc. Your newline characters \n"
"have been converted to '
' so they will show \n"
"up right on your Plotly figure!"
)
return s
else:
return obj # we return the actual reference... but DON'T mutate.
def return_figure_from_figure_or_data(figure_or_data, validate_figure):
from plotly.graph_objs import Figure
from plotly.basedatatypes import BaseFigure
validated = False
if isinstance(figure_or_data, dict):
figure = figure_or_data
elif isinstance(figure_or_data, list):
figure = {"data": figure_or_data}
elif isinstance(figure_or_data, BaseFigure):
figure = figure_or_data.to_dict()
validated = True
else:
raise exceptions.PlotlyError(
"The `figure_or_data` positional "
"argument must be "
"`dict`-like, `list`-like, or an instance of plotly.graph_objs.Figure"
)
if validate_figure and not validated:
try:
figure = Figure(**figure).to_dict()
except exceptions.PlotlyError as err:
raise exceptions.PlotlyError(
"Invalid 'figure_or_data' argument. "
"Plotly will not be able to properly "
"parse the resulting JSON. If you "
"want to send this 'figure_or_data' "
"to Plotly anyway (not recommended), "
"you can set 'validate=False' as a "
"plot option.\nHere's why you're "
"seeing this error:\n\n{0}"
"".format(err)
)
if not figure["data"]:
raise exceptions.PlotlyEmptyDataError(
"Empty data list found. Make sure that you populated the "
"list of data objects you're sending and try again.\n"
"Questions? Visit support.plot.ly"
)
return figure
# Default colours for finance charts
_DEFAULT_INCREASING_COLOR = "#3D9970" # http://clrs.cc
_DEFAULT_DECREASING_COLOR = "#FF4136"
DIAG_CHOICES = ["scatter", "histogram", "box"]
VALID_COLORMAP_TYPES = ["cat", "seq"]
# Deprecations
class FigureFactory(object):
@staticmethod
def _deprecated(old_method, new_method=None):
if new_method is None:
# The method name stayed the same.
new_method = old_method
warnings.warn(
"plotly.tools.FigureFactory.{} is deprecated. "
"Use plotly.figure_factory.{}".format(old_method, new_method)
)
@staticmethod
def create_2D_density(*args, **kwargs):
FigureFactory._deprecated("create_2D_density", "create_2d_density")
from plotly.figure_factory import create_2d_density
return create_2d_density(*args, **kwargs)
@staticmethod
def create_annotated_heatmap(*args, **kwargs):
FigureFactory._deprecated("create_annotated_heatmap")
from plotly.figure_factory import create_annotated_heatmap
return create_annotated_heatmap(*args, **kwargs)
@staticmethod
def create_candlestick(*args, **kwargs):
FigureFactory._deprecated("create_candlestick")
from plotly.figure_factory import create_candlestick
return create_candlestick(*args, **kwargs)
@staticmethod
def create_dendrogram(*args, **kwargs):
FigureFactory._deprecated("create_dendrogram")
from plotly.figure_factory import create_dendrogram
return create_dendrogram(*args, **kwargs)
@staticmethod
def create_distplot(*args, **kwargs):
FigureFactory._deprecated("create_distplot")
from plotly.figure_factory import create_distplot
return create_distplot(*args, **kwargs)
@staticmethod
def create_facet_grid(*args, **kwargs):
FigureFactory._deprecated("create_facet_grid")
from plotly.figure_factory import create_facet_grid
return create_facet_grid(*args, **kwargs)
@staticmethod
def create_gantt(*args, **kwargs):
FigureFactory._deprecated("create_gantt")
from plotly.figure_factory import create_gantt
return create_gantt(*args, **kwargs)
@staticmethod
def create_ohlc(*args, **kwargs):
FigureFactory._deprecated("create_ohlc")
from plotly.figure_factory import create_ohlc
return create_ohlc(*args, **kwargs)
@staticmethod
def create_quiver(*args, **kwargs):
FigureFactory._deprecated("create_quiver")
from plotly.figure_factory import create_quiver
return create_quiver(*args, **kwargs)
@staticmethod
def create_scatterplotmatrix(*args, **kwargs):
FigureFactory._deprecated("create_scatterplotmatrix")
from plotly.figure_factory import create_scatterplotmatrix
return create_scatterplotmatrix(*args, **kwargs)
@staticmethod
def create_streamline(*args, **kwargs):
FigureFactory._deprecated("create_streamline")
from plotly.figure_factory import create_streamline
return create_streamline(*args, **kwargs)
@staticmethod
def create_table(*args, **kwargs):
FigureFactory._deprecated("create_table")
from plotly.figure_factory import create_table
return create_table(*args, **kwargs)
@staticmethod
def create_trisurf(*args, **kwargs):
FigureFactory._deprecated("create_trisurf")
from plotly.figure_factory import create_trisurf
return create_trisurf(*args, **kwargs)
@staticmethod
def create_violin(*args, **kwargs):
FigureFactory._deprecated("create_violin")
from plotly.figure_factory import create_violin
return create_violin(*args, **kwargs)
def get_config_plotly_server_url():
"""
Function to get the .config file's 'plotly_domain' without importing
the chart_studio package. This property is needed to compute the default
value of the plotly.js config plotlyServerURL, so it is independent of
the chart_studio integration and still needs to live in
Returns
-------
str
"""
config_file = os.path.join(PLOTLY_DIR, ".config")
default_server_url = "https://plot.ly"
if not os.path.exists(config_file):
return default_server_url
with open(config_file, "rt") as f:
try:
config_dict = json.load(f)
if not isinstance(config_dict, dict):
config_dict = {}
except:
# TODO: issue a warning and bubble it up
config_dict = {}
return config_dict.get("plotly_domain", default_server_url)