import _plotly_utils.basevalidators class XbinsValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="xbins", parent_name="histogram2dcontour", **kwargs): super(XbinsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "XBins"), data_docs=kwargs.pop( "data_docs", """ end Sets the end value for the x axis bins. The last bin may not end exactly at this value, we increment the bin edge by `size` from `start` until we reach or exceed `end`. Defaults to the maximum data value. Like `start`, for dates use a date string, and for category data `end` is based on the category serial numbers. size Sets the size of each x axis bin. Default behavior: If `nbinsx` is 0 or omitted, we choose a nice round bin size such that the number of bins is about the same as the typical number of samples in each bin. If `nbinsx` is provided, we choose a nice round bin size giving no more than that many bins. For date data, use milliseconds or "M" for months, as in `axis.dtick`. For category data, the number of categories to bin together (always defaults to 1). start Sets the starting value for the x axis bins. Defaults to the minimum data value, shifted down if necessary to make nice round values and to remove ambiguous bin edges. For example, if most of the data is integers we shift the bin edges 0.5 down, so a `size` of 5 would have a default `start` of -0.5, so it is clear that 0-4 are in the first bin, 5-9 in the second, but continuous data gets a start of 0 and bins [0,5), [5,10) etc. Dates behave similarly, and `start` should be a date string. For category data, `start` is based on the category serial numbers, and defaults to -0.5. """, ), **kwargs )